

Introduction à l'imagerie radar –

Physique de la mesure

Jean-Claude Souyris, CNES

SIA_ 2011 (01/12/2011)

Principe de la télédétection (1/4)

Ensemble de techniques utilisées pour déterminer les propriétés des objets à partir de leur comportement en diffusion

Courtesy Christophe Valorge, CNES, SI/QI

Principe de la télédétection (2/4)

- Gamme étendue de signaux observés , incluant :
 - **•** Spectre visible : [0.4 , 0.7] μm : Le monde tel qu'on le voit
 - Proche infra-rouge : [0.7, 3] μm : vegetation, humidité de surface...
 - Infra-rouge [3, 50] µm : signatures dépendante de la température
 - Micro-ondes [3 cm 100 cm] : rugosité, humidité, biomasse, océanographie, objets métalliques, mouvements, ... radar

Courtesy Christophe Valorge, CNES, SI/QI

Principe de la télédétection (3/4)

Le spectre électromagnétique :

Principe de la télédétection (4/4) → Imagerie passive, imagerie active

Courtesy Christophe Valorge, CNES, SI/QI

Onde radar \rightarrow

≈ peu de sensibilité aux conditions meteo

Landsat TM *

ERS (radar C band, 23°, VV)*

FONDAMENTAUX DU RADAR

Les mesures de laps de temps entre émission d'une impulsion et retour de l'écho sont traduites en information de distance

Principe du radar : chronogramme d'une impulsion (impulsion idéale, « sans épaisseur »)

→ Distance cible radar : $d = c.\Delta t/2$

→ Mesure de temps transformée en information de distance

→ Distance Radar – Cible : $\mathbf{d} = \mathbf{c} \cdot \Delta \mathbf{t}/2 \pm \mathbf{c} \cdot \tau/2$

→ Mesure temps = mesure de distance measurement + *incertitude*

Résolution distance = incertitude sur discrimination en distance

Discrimination possible si : $\Delta T \ge \tau \iff \Delta R \ge c \cdot \tau / 2$

Résolution distance = incertitude sur discrimination en discuse CDES

Non discrimination :

 $\Delta R \leq c \cdot \tau / 2$

Résolution distance = incertitude sur discrimination en distance →

Le monde tel qu'il est perçu

→ Par la vision optique : échantillonnage angulaire C∩es

Le monde tel qu'il est perçu

 \rightarrow Par la vision radar : échantillonnage en distance COES

Géométrie du radar imageur

Géométrie du radar imageur

Géométrie du radar imageur ... Que se passerait-il si le radar fonctionnait en visibilité nadir ? VES

A and B sont ambigus

Géométrie du radar imageur

... Le radar imageur doit fonctionner en slant range !

... et l'énergie réfléchie se propage principalement dans une direction différente de la direction d'observation du radar ...

Géométrie du radar imageur

... Le radar imageur doit fonctionner en slant range !

... Seulement une partie infime de l'énergie revient vers l'antenne du radar → criticité du bilan de liaison

Fabrication d'une image radar

Imagerie radar : principe de l'acquisition MONGTRACK

AZIMUTH

ALONG TRACK

Amélioration de la résolution azimuth

Azimuth

Image brute

Compression distance

Image résolué

Antenne à Synthèse d'Ouverture →

... Images réelles à partir d'antennes virtuelles ...

Effet du relief sur le radar imageur SAR

Structures géologiques (Ouadane, Mauritanie) – ⓒ TERRASAR-X

Effet de rugosité sur le radar imageur SAR

Faible rétrodiffusion→ faible radiométrie

Forte rétrodiffusion → forte rugosité

Effet du relief sur le radar imageur SAR itstone

RADARSAT, Bathurst Island, Canada © (RADARSAT International), 1997

Limestone

Signatures de bateaux

Détroit de Gibraltar, ⓒ TERRASAR-X

Signatures de bateaux

Mer rugueuse

Signatures de mer : Influence de la fréquence et de l'incidence

RADARSAT image, standard-1 mode (20°-27°), Rail d 'Ouessant, France / 09/03/1999

Le radar imageur et les glaces

Larsen Ice Shelf, Côte Est Péninsule Antartique, © TERRASAR-X
Le radar imageur, indicateur d'humidité

RADARSAT Région agricole état de Washington, USA.

Le radar imageur, indicateur d'humidité

Effet conjugué de la rugosité et de l'humidité sur le signal radar

Pénétration des ondes dans les milieux observés → Optique vs. Radar

LANDSAT

SIR-C SAR (C, L, X)

Pénétration des ondes dans les milieux observés

→La profondeur de pénétration augmente lorsque la fréquence dimintanes

CENTRE NATIONAL D'ÉTUDES SPATIALES

Pénétration des ondes dans les milieux observés → Bande X vs. Bande L

X-Band (3 cm)

From :http://atlas.op.dlr.de/ne-hf/projects/ESAR/igars96_scheiber.html

L-Band (25 cm) (+ de pénétration)

Diffusion de volume sur une parcelle forestière

Pénétration des ondes dans les milieux observés → Vers les fréquences très basses (bande P)

S-Band (10 cm)

P-Band (290 cm)

Les différentes échelles de résolution → La classe 100 m

Image RADARSAT Juin 1997 (mode SCANSAR) zone Corse-Méditerranée, Fauchée : 500 km, résolution : 100 m

La Corse vue par RADARSAT / SCANSAR

Les différentes échelles de résolution → La classe 10 m

Image RADARSAT Mode F4 - Descendant Ville de Toulouse Fauchée : 35 km résolution : 10 m

Les différentes échelles de résolution → La classe 3 m

TerraSar-X mode Stripmap 3m : extrait Gibraltar http://www.dlr.de/en/desktopdefault.aspx/tabid-4313/6950_read-10126/

11

RADARSAT-2 : mode ultra-fin 3m)

Les différentes échelles de résolution

→ La classe ' 1m ' (SAR-Lupe, Cosmo)

... Attention aux effets muti-look

Effet double rebond (double bounce) / effet d'ombre

COSMO-SKYMED : premières images

TERRASAR-X : premières images

TERRASAR-X SPOTLIGHT → Résolution géométrique classe 1 m

Les différentes échelles de résolution → La classe submétrique

ru,

© ONERA

CNES, Centre de Toulouse, RAMSES,2004

Une géométrie difficile ...

→ Artifacts géométriques liés à la vision en distance

Foreshortening

Image line • A' • C • B' • B'

Layover

Copyright RADARSAT international

Une géométrie difficile ...

→ L'effet de layover : renversant !

... et une radiométrie délicate : le bruit de speckle

- lumière aléatoire : résultat certain ...
- lumière ordonnée : résultat aléatoire !

Le speckle est un bruit multiplicatif

Les techniques vectorielles : Interférométrie radar

CENTRE NATIONAL D'ÉTUDES SPATIALES

La France vue par SRTM en Février 2000

Les techniques vectorielles : Interférométrie radar

CENTRE NATIONAL D'ÉTUDES SPATIALES

→ Mouvements de terrain : Subsidences sur Paris

Polarimétrie radar

Polarimétrie SIR-C / Site de Ulan-Ude (Russie)

POLARIMETRIE RADAR → AGRICULTURE

Le SAR imageur pour les études planétologiques

Mission Magellan sur Venus

Le Mont Sapas Surface : 650 km x 650 km

Voyage : Mai 89 → Aug. 90

Température de surface : 730 K

Atmosphère : CO2 (96%) nitrogène (3%)

<u>Caractéristiques du SAR :</u> bande S (**2.385 GHz**) Puissance crête : **325 W** Longueur de l'impulsion : **26.5 μs** PRF : **4400-5800 Hz** Fauchée : **25 km** Résolution : **150 m** Quantification sur **2 bits**

Le SAR imageur pour les études planétologiques

First RADAR image of Titan from Cassini - 2005 : 120 kilometers (75 miles) wide by 2,000 kilometers (1,250 miles) long (segment of the full strip). Image: NASA/JPL

RADAR Sensing Instruments:

* SAR (13.78 GHz, Ku-band (2,2cm); 0.35 to 1.7 km resolution

* Altimeter (Ku-band; 24 to 27 km horizontal, 90 to 150 m vertical resolution)

* Radiometer (passive Ku-band; 7 to 310 km resolution)