mikroElektronika

Development tools - Books - Compilers
www.mikroe.com

[S
—
=
S
=

C CoOMPILER FOR MICROCHIP PIC MICROCONTROLLERS

mikroC

Making it simple

Develop your applications quickly and easily with the world's
most intuitive C compiler for PIC Microcontrollers (families
PIC12, PIC16, and PIC18).

Highly sophisticated IDE provides the power you need with the
simplicity of a Windows based point-and-click environment.

S 7 With useful implemented tools, many practical code examples,
supllnn'l'[n broad set of built-in routines, and a comprehensive Help, mikroC
makes a fast and reliable tool, which can satisfy needs of experi-

% Irom “6_0 enced engineers and beginners alike.

mikro

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

| Reader’s note |

DISCLAIMER:

mikroC and this manual are owned by mikroElektronika and are protected by copyright law
and international copyright treaty. Therefore, you should treat this manual like any other copy-
righted material (e.g., a book). The manual and the compiler may not be copied, partially or
as a whole without the written consent from the mikroEelktronika. The PDF-edition of the
manual can be printed for private or local use, but not for distribution. Modifying the manual
or the compiler is strictly prohibited.

HIGH RISK ACTIVITIES

The mikroC compiler is not fault-tolerant and is not designed, manufactured or intended for
use or resale as on-line control equipment in hazardous environments requiring fail-safe per-
formance, such as in the operation of nuclear facilities, aircraft navigation or communication
systems, air traffic control, direct life support machines, or weapons systems, in which the fail-
ure of the Software could lead directly to death, personal injury, or severe physical or envi-
ronmental damage ("High Risk Activities"). mikroElektronika and its suppliers specifically dis-
claim any express or implied warranty of fitness for High Risk Activities.

LICENSE AGREEMENT:

By using the mikroC compiler, you agree to the terms of this agreement. Only one person
may use licensed version of mikroC compiler at a time.

Copyright © mikroElektronika 2003 - 2006.

This manual covers mikroC version 6.2.0.1 and the related topics. Newer versions may
contain changes without prior notice.

COMPILER BUG REPORTS:
The compiler has been carefully tested and debugged. It is, however, not possible to
guarantee a 100 % error free product. If you would like to report a bug, please contact us at
the address office@mikroe.com. Please include next information in your bug report:

- Your operating system

- Version of mikroC

- Code sample

- Description of a bug

CONTACT US:

mikroElektronika

Voice: + 381 (11) 30 66 377, + 381 (11) 30 66 378
Fax: + 381 (11) 30 66 379

Web: www.mikroe.com

E-mail: office@mikroe.com

PIC, PICmicro and MPLAB is a Registered trademark of Microchip company. Windows is a
Registered trademark of Microsoft Corp. All other trade and/or services marks are the
property of the respective owners.

[y MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

e USer’s manms)

Table of Contents

CHAPTER 1 mikroC IDE
CHAPTER 2 Building Applications
CHAPTER 3 mikroC Reference
CHAPTER 4 mikroC Libraries

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

MIKROC - © CompPier Fog MicRacHe PIC wioroconTRaneRe, ... making it simple...

CHAPTER 1: mikroC IDE 1
Quick Overview 1
Code Editor 3
Code Explorer 6
Debugger 7
Error Window 11
Statistics 12
Integrated Tools 15
Keyboard Shortcuts 19
CHAPTER 2: Building Applications 21
Projects 22
Source Files 24
Search Paths 24
Managing Source Files 25
Compilation 27
Output Files 27
Assembly View 27
Error Messages 28
CHAPTER 3: mikroC Language Reference 31
PIC Specifics 32
mikroC Specifics 34
ANSI Standard Issues 34
Predefined Globals and Constants 35
Accessing Individual Bits 35
Interrupts 36
Linker Directives 37
Code Optimization 38
Indirect Function Calls 39
Lexical Elements 40
mikro ICD (In-Circuit Debugger) 42
mikro ICD Debugger Options 44
mikro ICD Debugger Example 45
mikro ICD Overview 49
Tokens 53
Constants 54
Integer Constants 54
Floating Point Constants 56
Character Constants 57
String Constants 59

CTpage e

g MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

making & smple... N MIKROC - © COMPILER FOR MICROCHIP PIE MICROCONTROLLERS
Enumeration Constants 60
Pointer Constants 60
Constant Expressions 60
Keywords 61
Identifiers 62
Punctuators 63
Objects and Lvalues 67
Scope and Visibility 69
Name Spaces 71
Duration 72
Types 74
Fundamental Types 75
Arithmetic Types 75
Enumeration Types 77
Void Type 79
Derived Types 80
Arrays 80
Pointers 83
Function Pointer 85
Pointer Arithmetic 87
Structures 91
Unions 96
Bit Fields 97
Types Conversions 99
Standard Conversions 99
Explicit Typecasting 101
Declarations 102
Linkage 104
Storage Classes 106
Type Qualifiers 108
Typedef Specifier 109
asm Declaration 110
Initialization 112
Functions 113
Function Declaration 113
Function Prototypes 114
Function Definition 115
Function Reentrancy 115
Function Calls 116
Ellipsis Operator 118
Operators 119
Precedence and Associativity 119
Arithmetic Operators 121
Relational Operators 123
Bitwise Operators 124
page

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS

MIKRODC -

C CoMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Logical Operators
Conditional Operator ? :
Assignment Operators
sizeof Operator
Expressions
Statements
Labeled Statements
Expression Statements
Selection Statements
Iteration Statements
Jump Statements
Compound Statements (Blocks)
Preprocessor
Preprocessor Directives
Macros
File Inclusion
Preprocessor Operators
Conditional Compilation

CHAPTER 4: mikroC Libraries

Built-in Routines

Library Routines
ADC Library
CAN Library
CANSPI Library
Compact Flash Library
Compact Flash Flash FAT Library v2.xx
EEPROM Library
Ethernet Library
SPI Ethernet Library
Flash Memory Library
12C Library
Keypad Library
LCD Library (4-bit interface)
LCD Custom Library (4-bit interface)
LCDS8 Library (8-bit interface)
Graphic LCD Library
T6963C Graphic LCD Library
Manchester Code Library
Multi Media Card Library
OneWire Library
PS/2 Library
PWM Library

155

156
160
162
164
176
185
195
198
200
212
224
227
232
236
242
248
252
263
279
285
296
300
303

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS -

COMPILERS

making & smple... N MIKROC - © COMPILER FOR MICROCHIP PIE MICROCONTROLLERS
RS-485 Library 307
Software 12C Library 313
Software SPI Library 317
Software UART Library 320
Sound Library 323
SPI Library 325
USART Library 329
USB HID Library 333
Util Library 338
ANSI C Ctype Library 339
ANSI C Math Library 343
ANSI C Stdlib Library 349
ANSI C String Library 353
Conversions Library 359
Trigonometry Library 363
Sprint Library 364
SPI Graphic LCD Library 369
Port Expander Library 380
SPI LCD Library 388
SPI LCD8 (8-bit interface) Library 393
Spi T6963C Graphic LCD Library 398
Setjmp Library 414
Time Library 416
Contact Us 419
page
MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS [}

MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dtW'n
page
ggo MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BoOKS - COMPILERS

CHAPTER

mikroC IDE

QUICK OVERVIEW

mikroC is a powerful, feature rich development tool for PICmicros. It is designed
to provide the customer with the easiest possible solution for developing applica-
tions for embedded systems, without compromising performance or control.

PIC and C fit together well: PIC is the most popular 8-bit chip in the world, used
in a wide variety of applications, and C, prized for its efficiency, is the natural
choice for developing embedded systems. mikroC provides a successful match
featuring highly advanced IDE, ANSI compliant compiler, broad set of hardware
libraries, comprehensive documentation, and plenty of ready-to-run examples.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

MIKROG - G COMPILER FOR MICROCHIP PIC MICROCONTROLLERS _ ____________________ "aking & dmple...
b == x|
Fie Edit View Project Run Tooks Help
0&- % BR-EEE @am BEHE (0w sREH g @P watgh
A | [Feed binkirae Inaow
Cods Explarer ‘QHE\D‘ Keyboard | B
¥E|@ cl
Functions
i‘z‘i‘jes | [4pAdd [Remove gy Properties
COde — [pcrate
EXpIorer [Hame [value [‘address ’/ =
PCLATH o 0000004 @
PSTACK_O a 0=000050
INDF a 0000000 Zn
o n PCL a 0x000002
A n 4 | STATUS a 0=000003
- i I a 0000004
GPIO a 02000005
o — PCLATH o 0000004
Project Setup Project Surmary i
Code Roisdie | PC= 03000004 [Time=0.00 us
Editor & b
incton ol Dely_2o0e]
function void Delay_50us)
X function void Delay_B0us]
Project finaen o Delayo50on)
—_— function void Delay_Smf)
Summary (
> @) Messages | 2 Find | B acomvero |
Ling/Column | Message Mo. | Message Tex! | Unit
E rror 118 24 Undeclared identifier 2] in expression Led binking.c
. —_—
Window
200 7 Insert Di\shbred|mikroc_5000_dachmikroC 5.0.0.0 Output Falder|examplesiP12F675 led_blinking|Led_blinking.c
Code
Assistant
mikroC allows you to quickly develop and deploy complex applications:
- Write your C source code using the highly advanced Code Editor
- Use the included mikroC libraries to dramatically speed up the development:
data acquisition, memory, displays, conversions, communications...
- Monitor your program structure, variables, and functions in the Code Explorer.
Generate commented, human-readable assembly, and standard HEX compatible
with all programmers.
- Inspect program flow and debug executable logic with the integrated Debugger.
Get detailed reports and graphs on code statistics, assembly listing, calling tree...
- We have provided plenty of examples for you to expand, develop, and use as
building bricks in your projects.
CTpage T

2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méut? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

CODE EDITOR

The Code Editor is an advanced text editor fashioned to satisfy the needs of pro-
fessionals. General code editing is same as working with any standard text-editor,
including familiar Copy, Paste, and Undo actions, common for Windows environ-
ment.

Advanced Editor features include:

- Adjustable Syntax Highlighting

- Code Assistant

- Parameter Assistant

- Code Templates (Auto Complete)
- Auto Correct for common typos

- Bookmarks and Goto Line

You can customize these options from the Editor Settings dialog. To access the
settings, choose Tools > Options from the drop-down menu, or click the Tools

1con.
g—‘\ Editor Settings
=T Editor Editor Colors
Colars
Tools Icon. Auta Carect Scheme: |Zedar -
TForml: :Buttonlclic
Auto Complete HNew scheme| Delete | rm u n i
Taols
+/-- Compiler Agzsembler nurber
Output Background o g
I_.urnrnant Caption "The nunkber i: IntTostr (i
Directive
Identifier
Key
Label
MHumber
String
Spmbol
< ¥

[=3

Text Attributes
[~ Bold [Underdine
W Italic ™ Stikeout

0k | Cancel Apply

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 3

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

Code Assistant [CTRL+SPACE]

If you type a first few letter of a word and then press CTRL+SPACE, all the valid
identifiers matching the letters you typed will be prompted in a floating panel (see
the image). Now you can keep typing to narrow the choice, or you can select one
from the list using the keyboard arrows and Enter.

H

funchion unzsigned int Flash_Read| unzsigned int] J
function void Flash_Wnte[unzigned int, unsigned int]

fr FSH

const F=1

conszt FERR =2

[

Parameter Assistant [CTRL+SHIFT+SPACE]

The Parameter Assistant will be automatically invoked when you open a parenthe-
sis "(" or press CTRL+SHIFT+SPACE. If name of a valid function precedes the
parenthesis, then the expected parameters will be prompted in a floating panel. As
you type the actual parameter, the next expected parameter will become bold.

channel : char
AD C_Rea

Code Template [CTR+J]

You can insert the Code Template by typing the name of the template (for
instance, whileb), then press CTRL+J, and the Code Editor will automatically
generate the code. Or you can click a button from the Code toolbar and select a
template from the list.

You can add your own templates to the list. Just select Tools > Options from the
drop-down menu, or click the Tools Icon from Settings Toolbar, and then select
the Auto Complete Tab. Here you can enter the appropriate keyword, description,
and code of your template.

4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Auto Correct

The Auto Correct feature corrects common typing mistakes. To access the list of
recognized typos, select Tools > Options from the drop-down menu, or click the
Tools Icon, and then select the Auto Correct Tab. You can also add your own pref-
erences to the list.

fxx}
:L / Comment/Uncomment

Comment / The Code Editor allows you to comment or uncomment selected block of code by
Uncomment Icon.

a simple click of a mouse, using the Comment/Uncomment icons from the Code
Toolbar.

Bookmarks

Bookmarks make navigation through large code easier.

CTRL+<number> : Go to a bookmark

CTRL+SHIFT+<number> : Set a bookmark

Goto Line

Goto Line option makes navigation through large code easier. Select Search >
Goto Line from the drop-down menu, or use the shortcut CTRL+G.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 5

MIKRODC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

CODE EXPLORER

=

Collapse/Expand

All Icon.

The Code Explorer is placed to the left of the main window by default, and gives a
clear view of every declared item in the source code. You can jump to a declara-
tion of any item by clicking it, or by clicking the Find Declaration icon. To expand
or collapse treeview in Code Explorer, use the Collapse/Expand All icon.

Also, two more tabs are available in Code Explorer. QHelp Tab lists all the avail-
able built-in and library functions, for a quick reference. Double-clicking a routine
in QHelp Tab opens the relevant Help topic. Keyboard Tab lists all the available
keyboard shortcuts in mikroC.

x| x| x|
Code Explorer] E!Help] Ke_l,lboard] Code Explorer GHelp lKeyhoard] Code E:-:plorer] (QHelp Kepboard
EEZ -'-: @ CF_write_whord ”~ CTRL+) Insert Code Template
CF_Read_Init CTRL+L Procedures List
(2 Uses CF_Fiead_Byte CTRL+<number: Goto boc
- {23 Labels CF_Read_ward CTRL+GHIFT +<number> Set t
* _loop CF_Set_Reg Adr CTRL+SHIFT+l Indent selectic
=1 Eonstants AN CTRL+SHIFT+U Unindent selk
° Samples CANSetOperationtade CTRL+ALT+3ELECT Select o
° _Delta CaMNGetDperationkd ode Debugger Shortcuts
= a\r’anal_:les CaNIritialize F4 Fun to Cursor
° .Slne\-falue CAMSetBaudR ate F5 Toggle breakpoint
*l CaMSettdazk FE Run/Pause Debugger
° T CANS efFilter F? Stepinto
= aFuncho‘ns RegsTolaMID F8 Step over
® main CANIDToRegs F3 Debug
* Intempt Tt CTRL+F2 Reset
= Processalue Cémlnead Basic Editor shortcuts
® valus CANSP F3 Find, Find Mext
 Ini CAMNSPISetDperationtods CTRL+A Select &l
CANSPIGetD perationkode CTRL+C Copy
CAMSPIlInitiahze CTRL+F Find
CanSPISetBaudR ate CTRL+P Print
CANSPIS ethd agk CTRL+R Replace
CaNSPISetFilter CTRL+5 Save unit
FlegsTalCANSPID CTRL+SHIFT+5 Sawve As
CANSPIDToRegs CTRL+Y Paste
CAMNSPlvarite CTRL+4 Cut
CanSPlread CTRL+Y Reda
R5485 CTRL+Z Unde a
RS 485master_init
DOC AOE mn mmbmr pmmed bt >
MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

DEBUGGER

The source-level Debugger is an integral component of mikroC development envi-
ronment. It is designed to simulate operations of Microchip Technology's
PICmicros and to assist users in debugging software written for these devices.

@:}

Start Debugger

The Debugger simulates program flow and execution of instruction lines, but does
not fully emulate PIC device behavior: it does not update timers, interrupt flags,
etc.

After you have successfully compiled your project, you can run the Debugger by
selecting Run > Debug from the drop-down menu, or by clicking the Debug Icon .
Starting the Debugger makes more options available: Step Into, Step Over, Run to
Cursor, etc. Line that is to be executed is color highlighted.

Debug [F9]
1 Start the Debugger.

[unet]

Pause Debugger

Run/Pause Debugger [F6]
Run or pause the Debugger.

Step Into [F7]
) Execute the current C (single— or multi—cycle) instruction, then halt. If the instruc-
Step Into tion is a routine call, enter the routine and halt at the first instruction following the
call.
s Step Over [F8]
) Execute the current C (single— or multi—cycle) instruction, then halt. If the instruc-
Step Over tion is a routine call, skip it and halt at the first instruction following the call.
Step Out [Ctrl+F8]
Lo g Execute the current C (single— or multi—cycle) instruction, then halt. If the instruc-
Step Out tion is within a routine, execute the instruction and halt at the first instruction fol-
lowing the call.
& Run to cursor [F4]
Executes all instructions between the current instruction and the cursor position.

Run to Cursor

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 7

mikro

MIKROE - C EOMPILER FOR MIGROGHIP PIC MIGROGONTROLLERS | | making it simple...
Toggle Breakpoint [F5]
= Toggle breakpoint at current cursor position. To view all the breakpoints, select
Toggle Run > View Breakpoints from the drop-down menu. Double clicking an item in
Breakpoint. window list locates the breakpoint.

Watch Window

Variables

The Watch Window allows you to monitor program items while running your pro-
gram. It displays variables and special function registers of PIC MCU, their
addresses and values. Values are updated as you go through the simulation.

(€] watch EBX
& add [Remove % Properties &
PCLATH -
Marne | Yalue | Address
PCLATH u} O:000004
FaTACK_0 u} Q000050
INCF 0 Q000000
PCL 0 Q000002
STATUS u} 0000003
FaR. u} Q000004
GPIO 0 Q000005
PCLATH 0 Q000008
< |
PC= 0000004 Tirne= 0,00 us

Double clicking one of the items opens a window in which you can assign a new
value to the selected variable or register and change number formatting.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méut? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Stopwatch Window

The Stopwatch Window displays the current count of cycles/time since the last
Debugger action. Stopwatch measures the execution time (number of cycles) from
the moment the Debugger is started, and can be reset at any time. Delta represents
the number of cycles between the previous instruction line (line where the
Debugger action was performed) and the active instruction line (where the
Debugger action landed).

Note: You can change the clock in the Stopwatch Window; this will recalculate

values for the newly specified frequency. Changing the clock in the Stopwatch
Window does not affect the actual project settings — it only provides a simulation.

|E| Stopwatch E @ E]

Cycles: Time:
Current Count: E 0.00 us
Delka: 0 0.00 us
Skopwatch: a 0.00 us
Reset To Zero
Clock: 4 MHz

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @

MIKRODC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

View RAM Window

Debugger View RAM Window is available from the drop-down menu, View >

Debug Windows > View RAM.

The View RAM Window displays the map of PIC’s RAM, with recently changed
items colored red. You can change value of any field by double-clicking it.

(€] RAM =1
RAM ¢ Historﬂ

00]01|02]03]04]05‘06]D?Iosl09|0AIDBIDCIDDIDEIDFIASCII I’_‘
ooooy 00 | 00 | OO 0D 00 00 00 00 00 00 | 00 00 00 00 00 00 ceeeeieeaaeaann
o010y 00 | OO0 | 00 OD OO0 00 00 00 00 00 00 00 00 00 00 00 ceeeeiieaeeaann
_DDE Juli] uli] oo . Juli] . ag g uli] | oo . oa oo o0 |) . oo oo oo . [
E il uli] oo 00 00D 0O 00 00 00 oo 00 00 00 00 0D 0D ceeeeeaaaaaaaans
E oo oo 00 00 00 00 00 00 00 oo 00 00 00 00 00 00 «evvvvnnaniaaan
E oo oo | 0o . oo . oo 0o o0 . ful] . o0 | 00 | o . oo . oo oo oo . 00 || esmmemma e
E 00 | oo 0o . o0 00 |00 0O 00 . o0 |00 | 00 . 00 | 00 | 00 00 | 00 e
o070 00 | OO0 | OO OO OO0 00 00 00 00 00 | 00 00 00 00 00 00 ceeeeaieeaaeaann
o0g0| 00 | OO0 | OO0 OD OO0 00 00 00 00 00 00 00 00 00 00 00 ceeeeeieeaaeaann
oosoy oo uli] oo . oo oo oo 00 00 . Juli] oa oo . 00 | 00 | 00 00 00 veeeeenae i
o0a0l 0O 00 00 |00 00 OO0 00 00 00 00 00 00 | 00 00 | 00 | 00 ceeeeeiaaiieeain
E il uli] oo 00 00D 0O 00 00 00 oo 00 00 00 00 0D 0D ceeeeenaaaaaaans
E o] uli] L R W A 1 oo 00 00 00 00 00 00 ceeenaaaaiaaann
E o0 o0 0o . oo . oo 0o oo . [ul] . oo | o0 | o . oo . oo oo oo . (o e e
E oo | oo | oo . o0 00 | 00 00 0o . oo | 00 | o . 00 00 | 00 | 00 | 00 | e
OOFOy 00 | OO0 | OO OO OO0 00 00 00 00 00 | 00 00 00 00 00 00 ceeeeeeeaaeaann
— w

MIKROELEKTRONIKA: DEVELOPMENT TOOLS -

BOoks -

COMPILERS

Mé{«m? ct simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

ERROR WINDOW

In case that errors were encountered during compiling, the compiler will report
them and won't generate a hex file. The Error Window will be prompted at the
bottom of the main window by default.

The Error Window is located under the message tab, and displays location and
type of errors compiler has encountered. The compiler also reports warnings, but
these do not affect the output; only errors can interefere with generation of hex.

xl Messages ll:ﬂ Findl QEonverlDrl

Line/Calumn | Message Mo | Message Text | Linit

'I 34 Ihrvealid expresion E “Pragram F|Ies'\M|kroelektr0n|ka\rmkr0C'\E:-ta...
: d but_= found !
'I 35 Internal emar E “Pragram F|Ies'\M|kroelektr0n|ka\rmkr0C'\E:-ta...

Double click the message line in the Error Window to highlight the line where the
error was encountered.

Consult the Error Messages for more information about errors recognized by the
compiler.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ ﬂ

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W"? de'

STATISTICS

i After successful compilation, you can review statistics of your code. Select Project

> View Statistics from the drop-down menu, or click the Statistics icon. There are
Statistics Icon. SiX tab windows:

Memory Usage Window
Provides overview of RAM and ROM memory usage in form of histogram.

% Statistics ‘ZHE”X‘
] Frocedures (Graph) | Procedures (locations) | Frocedures (details) | RiaM | ROM |

RéM Memary Lsags (Ications)

ROM Memary Usage (Iocations)

540

1,617 Free RAM 30,581 Free ROM
23 Used RAM 2,176 Used ROM

Free RaM Used RAM Fres RO Used ROM

Procedures (Graph) Window
Displays functions in form of histogram, according to their memory allotment.

Statistics

Memory usage | Procedures (Graph] | Procedures [lacations) | Procedures (details] | RAM | ROM |

ROM usage by procedure (ROM locations)

Main

CF_write_word SO

CF_yrite_irt -SRI P 10 - - - - - - - - < - - o oo s

CF_Rend_Word SR BN - - - - - - - --- - << - - §o-nmnoee oo eposeessossoodiooo

CF_Reac_Int

CF_Reod Byte JRNNRRRY - - - - --- <o ooooee oo

CF Int_Port B B e il e

CF _Detect B e e e s Rt

CF \wiite_Byte JREET

F _set_Reg_por WMEEE

RG] T Jamems e e e e S e e e e S o e e

200 400

ﬂ @ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méé&? ct simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Procedures (Locations) Window
Displays how functions are distributed in microcontroller’s memory.

% Statistics

Memory usage | Procedures (Graph) | Procedures flocalions] | Procedures (detalls) | Rt | ROM |

CF_Wte_Word

CF_Wite_init

CF_Read_Ward

CF_Read_nit

CF_Read_Byt

CF_init_Part

CF_Detect f

CF_Wite_Byte

CF_Set_Reg_Adr ¢

delay_1 |
Tl

0 500 1,000 1,500 2,000
ROM Address

Procedures (Details) Window
Displays complete call tree, along with details for each function:

Memory usage | Procedures (Graph) | Procedues (localions] Procedures (detais) | RaM | ROM |

= main]
compact_C_F_ef_init_port Unit: |ompact_C_F ppas
compact_C | Procedure: Name: [compact_C_F_cf_read_wor [Fieal Name: [CF_Read_wiord
= compact_C_F_cf_wite_irit
B1- compact_C_F_of_write_bute Size =] Frequency: [1
delays_delay_Tus Retun T [wod
L _set_reg_adi
& e ord Stan Address: [625 = [ounz7z
- EndAddiess: [653 = [owo3ge
= compact_C_F _of_read_ward
delays_delay_Tus Memom Page: |0
= compaot_C_F_of_wite_byte

delaps_delay_Tus
compact_C_F_cf_raad_init
= compact_C_F_cf_wite_byte
delaps_delay_us
compast_C_F_cf_set_reg_adr
= compact_C_F_cf read_byle

Canstants:

Variables: [0:001D compact_C_F_cf_read_word_param_ctipor_2

[EN(EN

delaps_delay_Tus

size, start and end address, calling frequency, return type, etc.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ @

MIKRODC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

RAM Window
Summarizes all GPR and SFR registers and their addresses. Also displays symbol-
ic names of variables and their addresses.

Memory usage | Frocedures (Graph) | Procedures (locations] | Frocedures [details) Fié }F\DM |
General purpase registers (GPR) Spesial lunction registers (SFR]
iddiess [Register [~ [adcress [Register ~
GO00C __emply 0:FE7 INDF1
G000 __emply O4FEE POSTINCI
OO00E __emply 04FES POSTDECT
OO00F __empty 0«FE4 PREINCT
G000 __emply DFE3 PLUSWA
00011 __emply 0OFE2 FSRIH
00012 __empty OOFET FSRIL
00013 __emply 0:FED BSA
00014 __emply 0:FDF | INDF2
040015 main_giobal 1 0FDE POSTINGZ
040016 main_giobal 2 0«FDD POSTDEC2
00017 compact_C_F_cl_wite_byte_param_ctrport_1 04FDC PREINCZ
040017 compact_C_F_cf set req_adi_param_ctrport_1 0OFDB PLUSW2
040018 compact_C_F_cf_wite_byte_param_ctrport_2 0FDA FSRZH
00018 compact_C_F_cf_sel_reg_adi_param_ctpart_2 04FDI FSRZL
00019 compact_C_F_cf_wite_bute_pariam_datapor_1 0«0FD8 STATUS
040019 compact_C_F_of_sst_req_adi_param_ach 0:OFD7 TMROH
040014 compact_C_F_cf_wite_byte_param_datspor_2 0:FDE TMROL
000TE compact_C_F_cl_wite_byte_param_bdata 0«FD5 TOCON
04001C compact_C_F_of_wite_init_param_ctlpor_1 | |oaF03 osooon v

ROM Window
Lists op-codes and their addresses in form of a human readable hex code.

] ‘nz |na |n-1 ‘ns ‘ns ‘07 i3] |na [~
1o = {F002 FFFF FFFF o100 0000 o2 oo coT? FFES
020 ctoig FrEA S0EF 6E01 OEFe 1401 6E00 5019 1000 £E00
0030 017 FFES oole FFEA cooo FFEF oz oo EE] FFES
0040 014 FFEA [EE] FFEF 17 FFES cots FFEA 8400 BEEF
0050 20600 1000 EE00 EFF 5000 E103 0000 EF2z Fooo EC4
0060 FoOo cot? FFES [EE] FFEA 9CEF ECD4 Fooo 8CEF EC4
0070 Fooo oz oo GATE oore FFES coin FFEA £A00 BSEF
080 2500 0E00 5000 E104 OEFF BETE EF4E Fooo oz o100
0080 cote FFES oo FFEA OEED EEEF 12 6ES BAEF BEEF
0040 BEEF COtE FFES CoTF FFEA OE0D BEEF [[3H 26E9 BAEF
00 ooz oo oiE FFES cotF FFEA OES4 GEEF [3H] 2669
oco CEFF BEEF ECO4 Fooo cotc FFES cot FFEA BA00 BEEF
000 2500 0E00 5000 E103 o000 EF72 Fo0o ECO04 Fooo oo1e
00ED FFES con FFEA 96EF EC4 Food COTE FFES CoTF FFEA
00F0 S0EF 6E20 ECO4 Fooo oo1e FFES colp FFEA S0EF i
o100 cotc FFES oo FFEA oot FFEF S0EF EC04 Fooo CoTE
v
— = e = o = n e e i —

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mé{«m? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

INTEGRATED TOOLS

USART Terminal

mikroC includes the USART (Universal Synchronous Asynchronous Receiver
Transmitter) communication terminal for RS232 communication. You can launch
it from the drop-down menu Tools > Terminal or by clicking the Terminal icon.

=, Communication Terminal

Settings Communication
Com Port ’ﬁ ‘at Send | Clear Ry,
Baud [0] |Agent P R FLF
Stop Bits: Connected to COM1
froe]

Sent: at
Parity:

r Recieved: OK

Data bits:

Commands

RIS DTR
" Off € 0f
+ 0On @« On
| g Disconnect ‘

Status

Send Receive LTS DsR
L L L] (*]

Cloze

ASCII Chart
The ASCII Chart is a handy tool, particularly useful when working with LCD dis-
play. You can launch it from the drop-down menu Tools > ASCII chart.

< ASCII Chart (=1E3

CHALE DEC HEX EIN &

NUL u] Ox00 oooo oooo m
S0H 1 Ox0l oooo oool
BT E Ox0Z oooo 0010
ETx 3 0x03 o000 0011
EOT 4 Ox04 oooo 0loo
ENQ = Ox0& oooo o010l
ACE) Ox0& oooo 0110
EEL 7 0x07 oooo 0111
EZ =] Ox03 oooo 1000
HT 9 Ox039 oooo 100l
LF 10 Ox0h o000 1010
VT 11 0x0B o000 1011
FF 1z OxoC oooo 1100
CR 13 Ox0D oooo 110l I

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ 5

mikroC

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

7 Segment Display Decoder

The 7seg Display Decoder is a convenient visual panel which returns decimal/hex
value for any viable combination you would like to display on 7seg. Click on the
parts of 7 segment image to get the desired value in the edit boxes. You can launch
it from the drop-down menu Tools > 7 Segment Display.

7 segment display decoder, FZ|

_ Common cathode
$ED
Comman ahode

$12

Decode in:
" decimal value
¢ hex value

EEPROM Editor
EEPROM Editor allows you to easily manage EEPROM of PIC microcontroller.

7. EEprom Dump @

0x 00 [FF Usze thiz
Data Memory Size: 256 Bytes r EEFB.DM
definition

8280 34 56 78 98 FF 56 66 FF |66 FF FF FF FF FF FF
ex10 |FF 12 |34 56 78 90 FF FF FF 55 44 FF FF FF FF FF
8x20 |FF FF 12 34 56 78 90 FF FF FF FF 33 FF FF FF FF
8x30 |FF FF [FF FF FF FF FF FF FF FF FF FF FF FF FF FF
ox40 |FF FF [FF FF FF FF FF FF FF FF FF FF FF FF FF FF
8x50 |FF FF [FF FF FF FF FF FF FF FF FF FF FF FF FF FF
8x60 |FF FF [FF FF FF FF FF FF FF FF FF FF FF FF FF FF
8x70 |FF FF [FF FF FF FF FF FF FF FF FF FF FF FF FF FF
8x80 |FF FF [FF FF FF FF FF FF FF FF FF FF FF FF FF FF
8x98 |FF FF [FF FF FF FF FF FF FF FF FF FF FF FF FF FF
exad |FF FF [FF FF FF FF FF FF FF FF FF FF FF FF FF FF
8xB8 |FF FF [FF FF FF FF FF FF FF FF FF FF FF FF FF FF
8xC8 |FF FF [FF FF FF FF FF FF FF FF FF FF FF FF FF FF
8xD0 |FF FF [FF FF FF FF FF FF FF FF FF FF FF FF FF FF
8xE® |FF FF [FF FF FF FF FF FF FF FF FF FF FF FF FF FF
8xF® |FF FF [FF FF FF FF FF FF FF FF FF FF FF FF FF FF

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méé&? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

mikroBootloader
mikroBootloader can be used only with PICmicros that support flash write.

1. Load the PIC with the appropriate hex file using the conventional programming
techniques (e.g. for PIC16F877A use p16f877a.hex).

2. Start mikroBootloader from the drop-down menu Tools > Bootoader.

3. Click on Setup Port and select the COM port that will be used. Make sure that
BAUD is set to 9600 Kpbs.

4. Click on Open File and select the HEX file you would like to upload.

5. Since the bootcode in the PIC only gives the computer 4-5 sec to connect, you
should reset the PIC and then click on the Connect button within 4-5 seconds.

6. The last line in then history window should now read “Connected”.

7. To start the upload, just click on the Start Bootloader button.

8. Your program will written to the PIC flash. Bootloader will report an errors that
may occur.

9. Reset your PIC and start to execute.

The boot code gives the computer 5 seconds to get connected to it. If not, it starts
running the existing user code. If there is a new user code to be downloaded, the
boot code receives and writes the data into program memory.

The more common features a bootloader may have are listed below:

- Code at the Reset location.

- Code elsewhere in a small area of memory.

- Checks to see if the user wants new user code to be loaded.

- Starts execution of the user code if no new user code is to be loaded.

- Receives new user code via a communication channel if code is to be loaded.
- Programs the new user code into memory.

Integrating User Code and Boot Code

The boot code almost always uses the Reset location and some additional program
memory. It is a simple piece of code that does not need to use interrupts; therefore,
the user code can use the normal interrupt vector at 0x0004. The boot code must
avoid using the interrupt vector, so it should have a program branch in the address
range 0x0000 to 0x0003. The boot code must be programmed into memory using
conventional programming techniques, and the configuration bits must be pro-
grammed at this time. The boot code is unable to access the configuration bits,
since they are not mapped into the program memory space.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ 7

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

KEYBOARD SHORTCUTS

Below is the complete list of keyboard shortcuts available in mikroC IDE. You can
also view keyboard shortcuts in Code Explorer window, tab Keyboard.

IDE Shortcuts

F1 Help

CTRL+N New Unit

CTRL+O Open

CTRL+F9 Compile

CTRL+F11 Code Explorer on/off
CTRLA+SHIFT+F5 View breakpoints

Basic Editor shortcuts

F3 Find, Find Next
CTRL+A Select All
CTRLAC Copy
CTRL+F Find
CTRL+P Print
CTRL+R Replace
CTRL+S Save unit
CTRL+SHIFT+S Save As
CTRL+V Paste
CTRL+X Cut
CTRL+Y Redo
CTRL+Z Undo

Advanced Editor shortcuts

CTRL+SPACE Code Assistant
CTRL+SHIFT+SPACE Parameters Assistant
CTRL+D Find declaration
CTRL+G Goto line

CTRLH+J Insert Code Template
CTRL+<number> Goto bookmark
CTRL+SHIFT+<number> Set bookmark
CTRL+SHIFT+I Indent selection
CTRL+SHIFT+U Unindent selection
CTRL+ALT+SELECT Select columns

ﬂ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

making & slmple... b MIKROGC - G CoMPILER FOR MIGROCHIP PIG MICROCONTROLLERS
Debugger Shortcuts

F4 Run to Cursor

F5 Toggle breakpoint

F6 Run/Pause Debugger

F7 Step into

F8 Step over

F9 Debug

CTRL+F2 Reset
e page

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ @

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W“? “Wu:

2@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

CHAPTER

Buildin
Applications

Creating applications in mikroC is easy and intuitive. Project Wizard allows you to
set up your project in just few clicks: name your application, select chip, set flags,
and get going.

mikroC allows you to distribute your projects in as many files as you find appro-
priate. You can then share your mikroCompiled Libraries (.mc1 files) with other
developers without disclosing the source code. The best part is that you can use
.mc1 bundles created by mikroPascal or mikroBasic!

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

PROJECTS

mikroC organizes applications into projects, consisting of a single project file
(extension .ppc) and one or more source files (extension .c). You can compile
source files only if they are part of a project.

Project file carries the following information:

- project name and optional description,

- target device,

- device flags (config word) and device clock,
- list of project source files with paths.

- New Project
93
New Project, The easiest way to create project is by means of New Project Wizard, drop-down
menu Project > New Project. Just fill the dialog with desired values (project name
and description, location, device, clock, config word) and mikroC will create the
appropriate project file. Also, an empty source file named after the project will be
created by default.
R Editing Project
B
Edit Project, Later, you can change project settings from drop-down menu Project > Edit

Project. You can rename the project, modify its description, change chip, clock,
config word, etc. To delete a project, simply delete the folder in which the project
file is stored.

.ﬁ Add/Remove Files from Project

Add to Project.

Project can contain any number of source files (extension . c). The list of relevant
source files is stored in the project file (extension .ppc). To add source file to
your project, select Project > Add to Project from drop-down menu. Each added
.‘__—if source file must be self-contained, i.e. it must have all the necessary definitions
after preprocessing. To remove file(s) from your project, select Project > Remove
from Project from drop-down menu.

Remove from
Project.

Note: For inclusion of header files, use the preprocessor directive #include.

22 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méut? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Extended functionality of the Project Files tab

By using the Project Files' new features, you can reach all the output files (.lst,
.asm) by a single click. You can also include in project the library files (.mcl), for
libraries, either your own or compiler default, that are project-specific.

Project Setup Project Surnmary

Project filez:

+- 3 CFiles
3 Library Filez
+1-3 Output Files

Libraries (.mcl) now have different, more compact format, compared to mikroC
version 2. This, however, means that library formats are now incompatible. The
users that are making transition from version 2 to 5, must re- build all their previ-
ously written libraries in order to use them in the new version. All the source code
written and tested in previous versions should compile correctly on version 5.0,
except for the asm{} blocks, which are commented in the asm section of help.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 2@

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

SOURCE FILES

Source files containing C code should have the extension . c. List of source files
relevant for the application is stored in project file with extension .ppc, along
with other project information. You can compile source files only if they are part
of a project.

Use the preprocessor directive #include to include headers. Do not rely on pre-
processor to include other source files — see Projects for more information.
Search Paths

Paths for source files (.c)

You can specify your own custom search paths. This can be configured by select-
ing Tools > Options from drop-down menu and then tab window Advanced.

In project settings, you can specify either absolute or relative path to the source
file. If you specify a relative path, mikroC will look for the file in following loca-
tions, in this particular order:

1. the project folder (folder which contains the project file .ppc),
2. your custom search paths,
3. mikroC installation folder > “uses” folder.

24 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méé&? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Paths for Header Files (.h)

Header files are included by means of preprocessor directive #include. If you
place an explicit path to the header file in preprocessor directive, only that location
will be searched.

You can specify your own custom search paths: select Tools » Options from the
drop-down menu and then select Search Path.

In project settings, you can specify either absolute or relative path to the header. If
you specify a relative path, mikroC will look for the file in following locations, in
this particular order:

1. the project folder (folder which contains the project file .ppc),

2. mikroC installation folder > “include” folder,
3. your custom search paths.

Managing Source Files

Ij Creating a new source file

New File. To create a new source file, do the following:

Select File > New from drop-down menu, or press CTRL+N, or click the New
File icon. A new tab will open, named “Untitled1”. This is your new source file.
Select File > Save As from drop-down menu to name it the way you want.

If you have used New Project Wizard, an empty source file, named after the proj-
ect with extension . c, is created automatically. mikroC does not require you to
have source file named same as the project, it’s just a matter of convenience.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 25

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Opening an Existing File

Select File > Open from drop-down menu, or press CTRL+O, or click the Open
File icon. The Select Input File dialog opens. In the dialog, browse to the location
of the file you want to open and select it. Click the Open button.

The selected file is displayed in its own tab. If the selected file is already open, its
current Editor tab will become active.

Open File Icon.

& Printing an Open File

Make sure that window containing the file you want to print is the active window.
Select File > Print from drop-down menu, or press CTRL+P, or click the Print
icon. In the Print Preview Window, set the desired layout of the document and
click the OK button. The file will be printed on the selected printer.

Print File Icon.

Saving File

=

Save File Icon.

Make sure that window containing the file you want to save is the active window.
Select File > Save from drop-down menu, or press CTRL+S, or click the Save
icon. The file will be saved under the name on its window.

Fic Saving File Under a Different Name

Make sure that window containing the file you want to save is the active window.

Select File > Save As from drop-down menu, or press SHIFT+CTRL+S. The New
File Name dialog will be displayed. In the dialog, browse to the folder where you

want to save the file. In the File Name field, modify the name of the file you want
to save. Click the Save button.

Save File As.

Closing a File

bx,

Make sure that tab containing the file you want to close is the active tab. Select

Close File.
File > Close from drop-down menu, or right click the tab of the file you want to
close in Code Editor. If the file has been changed since it was last saved, you will
be prompted to save your changes.
CTpage T

2@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééoﬂ? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

COMPILATION

v When you have created the project and written the source code, you will want to
(A compile it. Select Project > Build from drop-down menu, or click Build Icon, or
simply hit CTRL+F9.

Compile Icon.

Progress bar will appear to inform you about the status of compiling. If there are
errors, you will be notified in the Error Window. If no errors are encountered,
mikroC will generate output files.

Output Files

Upon successful compilation, mikroC will generate output files in the project fold-
er (folder which contains the project file . ppc). Output files are summarized
below:

Intel HEX file (. hex)
Intel style hex records. Use this file to program PIC MCU.

Binary mikro Compiled Library (.mc1)
Binary distribution of application that can be included in other projects.

List File (.1st)
Overview of PIC memory allotment: instruction addresses, registers, routines, etc.

Assembler File (.asm)
Human readable assembly with symbolic names, extracted from the List File.

Assembly View

After compiling your program in mikroC, you can click View Assembly Icon or
select Project » View Assembly from drop-down menu to review generated assem-
View Assembly LY code (. asm file) in a new tab window. Assembly is human readable with sym-

lcon. bolic names. All physical addresses and other information can be found in
Statistics or in list file (. 1st).

A

If the program is not compiled and there is no assembly file, starting this option
will compile your code and then display assembly.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 27

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

ERROR MESSAGES

Error Messages

- Specifier needed

- Invalid declarator

- Expected '(' or identifier

- Integer const expected

- Array dimension must be greater then 0
- Local objects cannot be extern

- Declarator error

- Bad storage class

- Arguments cannot be of void type

- Specifer/qualifier list expected

- Address must be greater than 0

- Identifier redefined

- case out of switch

- default label out of switch

- switch exp. must evaluate to integral type
- continue outside of loop

- break outside of loop or switch

- void func cannot return values

- Unreachable code

- Illegal expression with void

- Left operand must be pointer

- Function required

- Too many chars

- Undefined struct

- Nonexistent field

- Aggregate init error

- Incompatible types

- Identifier redefined

- Function definition not found

- Signature does not match

- Cannot generate code for expression

- Too many initializers of subaggregate
- Nonexistent subaggregate

- Stack Overflow: func call in complex expression
- Syntax Error: expected %s but %$s found
- Array element cannot be function

- Function cannot return array

2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

M “ f_‘f"ﬁﬂ_e_e o2 MIKROC - © COMPILER FOR MICROCHIP PIE MICROCONTROLLERS
- Inconsistent storage class
- Inconsistent type
- %s tag redefined
- Illegal typecast
- %s 1is not a valid identifier
- Invalid statement
- Constant expression required
- Internal error %s
- Too many arguments
- Not enough parameters
- Invalid expresion
- Identifier expected, but %s found
- Operator [%s] not applicable to this operands [$s]
- Assigning to non-1lvalue [%s]
- Cannot cast [%$s] to [%s]
- Cannot assign [%$s] to [%s]
- lvalue required
- Pointer required
- Argument is out of range
- Undeclared identifier [%$s] 1in expression
- Too many initializers
- Cannot establish this baud rate at %s MHz clock

Compiler Warning Messages

- Highly inefficent code: func call in complex expression
- Inefficent code: func call in complex expression

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 2@

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W“? “Wu:

@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

CHAPTER

mikroC Language
Reference

C offers unmatched power and flexibility in programming microcontrollers.
mikroC adds even more power with an array of libraries, specialized for PIC HW
modules and communications. This chapter should help you learn or recollect C
syntax, along with the specifics of programming PIC microcontrollers. If you are
experienced in C programming, you will probably want to consult mikroC
Specifics first.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

PIC SPECIFICS

In order to get the most from your mikroC compiler, you should be familiar with
certain aspects of PIC MCU. This knowledge is not essential, but it can provide
you a better understanding of PICs’ capabilities and limitations, and their impact
on the code writing.

Types Efficiency

First of all, you should know that PIC’s ALU, which performs arithmetic opera-
tions, is optimized for working with bytes. Although mikroC is capable of han-
dling very complex data types, PIC may choke on them, especially if you are
working on some of the older models. This can dramatically increase the time
needed for performing even simple operations. Universal advice is to use the
smallest possible type in every situation. It applies to all programming in general,
and doubly so with microcontrollers.

When it comes down to calculus, not all PICmicros are of equal performance. For
example, PIC16 family lacks hardware resources to multiply two bytes, so it is
compensated by a software algorithm. On the other hand, PIC18 family has HW
multiplier, and as a result, multiplication works considerably faster.

Nested Calls Limitations

Nested call represents a function call within function body, either to itself (recur-
sive calls) or to another function. Recursive function calls are supported by
mikroC but with limitations. Recursive function calls can't contain any function
parameters and local variables due to the PIC’s stack and memory limitations.

mikroC limits the number of non-recursive nested calls to:

- 8 calls for PIC12 family,
- 8 calls for PIC16 family,
- 31 calls for PIC18 family.

Number of the allowed nested calls decreases by one if you use any of the follow-
ing operators in the code: * / %. It further decreases if you use interrupts in the
program. Number of decreases is specified by number of functions called from
interrupt. Check functions reentrancy. If the allowed number of nested calls is
exceeded, the compiler will report a stack overflow error.

@2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méé&? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

PIC16 Specifics
Breaking Through Pages

In applications targeted at PIC16, no single routine should exceed one page (2,000
instructions). If routine does not fit within one page, linker will report an error.
When confront with this problem, maybe you should rethink the design of your
application — try breaking the particular routine into several chunks, etc.

Limits of Indirect Approach Through FSR

Pointers with PIC16 are “near”: they carry only the lower 8 bits of the address.
Compiler will automatically clear the 9th bit upon startup, so that pointers will
refer to banks 0 and 1. To access the objects in banks 3 or 4 via pointer, user
should manually set the IRP, and restore it to zero after the operation. The stated
rules apply to any indirect approach: arrays, structures and unions assignments,
etc.

Note: It is very important to take care of the IRP properly, if you plan to follow
this approach. If you find this method to be inappropriate with too many variables,
you might consider upgrading to PIC18.

Note: If you have many variables in the code, try rearranging them with linker
directive absolute. Variables that are approached only directly should be moved
to banks 3 and 4 for increased efficiency.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 3@

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

mikroC SPECIFICS
ANSI Standard Issues

Divergence from the ANSI C Standard

mikroC diverges from the ANSI C standard in few areas. Some of these modifica-
tions are improvements intenteded to facilitate PIC programming, while others are
result of PICmicro hardware limitations:

Function recursion is supported with limitations because of no easily-usable stack
and limited memory. See PIC Specifics.

Pointers to variables and pointers to constants are not compatible, i.e. no assigning
or comparison is possible between the two.

mikroC treats identifiers declared with const qualifier as “true constants” (C++
style). This allows using const objects in places where ANSI C would expect a
constant expression. If aiming at portability, use the traditional preprocessor
defined constants. See Type Qualifiers and Constants.

mikroC allows C++ style single-line comments using two adjacent slashes (//).
Features under construction: anonymous structures and unions.
Implementation-defined Behavior

Certain sections of the ANSI standard have implementation-defined behavior. This
means that the exact behavior of some C code can vary from compiler to compiler.
Throughout the help are sections describing how the mikroC compiler behaves in

such situations. The most notable specifics include: Floating-point Types, Storage
Classes, and Bit Fields.

@4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méé&? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Predefined Globals and Constants

To facilitate PIC programming, mikroC implements a number of predefined glob-
als and constants.

All PIC SFR registers are implicitly declared as global variables of volatile
unsigned short. These identifiers have external linkage, and are visible in the
entire project. When creating a project, mikroC will include an appropriate .def
file, containing declarations of available SFR and constants (such as TOIE, INTF,
etc). Identifiers are all in uppercase, identical to nomenclature in Microchip
datasheets. For the complete set of predefined globals and constants, look for
“Defs” in your mikroC installation folder, or probe the Code Assistant for specific
letters (Ctrl+Space in Editor).

Accessing Individual Bits

mikroC allows you to access individual bits of 8-bit variables, types char and
unsigned short. Simply use the direct member selector (.) with a variable,
followed by one of identifiers FO, F1, ..., F7. For example:

// If RBO 1is set, set RCO:
if (PORTB.F0) PORTC.FO = 1;

There is no need for any special declarations; this kind of selective access is an
intrinsic feature of mikroC and can be used anywhere in the code. Identifiers

FO—F7 are not case sensitive and have a specific namespace.

Provided you are familiar with the particular chip, you can also access bits by
name:

INTCON.TMROF = 0; // Clear TMROF

See Predefined Globals and Constants for more information on register/bit names.

Note: If aiming at portability, avoid this style of accessing individual bits, and use
the bit fields instead.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 35

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Interrupts

Interrupts can be easily handled by means of reserved word interrupt. mikroC
implictly declares function interrupt which cannot be redeclared. Its prototype is:

void interrupt (void);

Write your own definition (function body) to handle interrupts in your application.
mikroC saves the following SFR on stack when entering interrupt and pops them
back upon return:

PIC12 and PIC16 family: w, STATUS, FSR, PCLATH
PIC18 family: FSR (fast context is used to save WREG, STATUS, BSR)

Note: mikroC does not support low priority interrupts; for PIC18 family, interrupts
must be of high priority.

Function Calls from Interrupt

Calling functions from within the interrupt() routine is now possible. The compiler
takes care about the registers being used, both in "interrupt" and in "main" thread,
and performs "smart" context-switching between the two, saving only the registers
that have been used in both threads.Check functions reentrancy.

Here is a simple example of handling the interrupts from TMRO (if no other
interrupts are allowed):

void interrupt () {
counter++;
T™RO = 96;
INTCON = $20;
Y/~

In case of multiple interrupts enabled, you need to test which of the interrupts
occurred and then proceed with the appropriate code (interrupt handling).

@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Linker Directives

mikroC uses internal algorithm to distribute objects within memory. If you need to
have variable or routine at specific predefined address, use linker directives
absolute and org.

Directive absolute

Directive absolute specifies the starting address in RAM for variable. If variable is
multi-byte, higher bytes are stored at consecutive locations. Directive absolute is
appended to the declaration of variable:

int foo absolute 0x23;
// Variable will occupy 2 bytes at addresses 0x23 and 0x24;

Be careful when using absolute directive, as you may overlap two variables by
mistake. For example:

char i absolute 0x33;
// Variable i will occupy 1 byte at address 0x33

long jjjj absolute 0x30;

// Variable will occupy 4 bytes at 0x30, 0x31, 0x32, 0x33,
// so changing 1 changes jjjj highest byte at the same time

Directive org
Directive org specifies the starting address of routine in ROM.

Directive org is appended to the function definition. Directives applied to non-
defining declarations will be ignored, with an appropriate warning issued by link-
er. Directive org cannot be applied to an interrupt routine.

Here is a simple example:
void func(char par) org 0x200 f{

// Function will start at address 0x200
nop;

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 37

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

Code Optimization

Optimizer has been added to extend the compiler usability, cuts down the amount
of code generated and speed-up its execution. Main features are:

Constant folding
All expressions that can be evaluated in the compile time (i.e. are constant) are
being replaced by their result. (3 + 5 -> 8);

Constant propagation

When a constant value is being assigned to certain variable, the compiler recog-
nizes this and replaces the use of the variable in the code that follows by constant,
as long as variable's value remains unchanged.

Copy propagation
The compiler recognizes that two variables have same value and eliminates one of
them in the further code.

Value numbering
The compiler "recognize" if the two expressions yield the same result, and can
therefore eliminate the entire computation for one of them.

"Dead code" ellimination
The code snippets that are not being used elsewhere in the programme do not
affect the final result of the application. They are automatically being removed.

Stack allocation
Temporary registers ("Stacks") are being used more rationally, allowing for VERY
complex expressions to be evaluated with minimum stack consumption.

Local vars optimization
No local variables are being used if their result does not affect some of the global
or volatile variables.

Better code generation and local optimization

Code generation is more consistent, and much attention has been made to imple-
ment specific solutions for the code "building bricks" that further reduce output
code size.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Indirect Function Calls

If the linker encounters an indirect function call (by a pointer to function), it
assumes that any one of the functions, addresses of which were taken anywhere in
the program, can be called at that point. Use the #pragma funcall directive to
instruct the linker which functions can be called indirectly from the current func-
tion:

#pragma funcall <func name> <called func>[, <called func>,...]
A corresponding pragma must be placed in the source module where function
func_name is implemented. This module must also include declarations of all

functions listed in the called func list.

All functions listed in the called func list will be linked if function func_name is
called in the code no meter whether any of them was called or not.

Note: The #pragma funcall directive can help the linker to optimize function
frame allocation in the compiled stack.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 3@

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

LEXICAL ELEMENTS

These topics provide a formal definition of the mikroC lexical elements. They
describe the different categories of word-like units (tokens) recognized by a lan-

guage.

In the tokenizing phase of compilation, the source code file is parsed (that is, bro-
ken down) into fokens and whitespace. The tokens in mikroC are derived from a
series of operations performed on your programs by the compiler and its built-in
preprocessor.

A mikroC program starts as a sequence of ASCII characters representing the
source code, created by keystrokes using a suitable text editor (such as the mikroC
editor). The basic program unit in mikroC is the file. This usually corresponds to a
named file located in RAM or on disk and having the extension . c.

Whitespace

Whitespace is the collective name given to spaces (blanks), horizontal and vertical
tabs, newline characters, and comments. Whitespace can serve to indicate where
tokens start and end, but beyond this function, any surplus whitespace is discard-
ed. For example, the two sequences

int i; float f£;
and

int i;
float f;

are lexically equivalent and parse identically to give the six tokens.
The ASCII characters representing whitespace can occur within literal strings, in

which case they are protected from the normal parsing process (they remain as
part of the string).

4@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Comments

Comments are pieces of text used to annotate a program, and are technically
another form of whitespace. Comments are for the programmer’s use only; they
are stripped from the source text before parsing. There are two ways to delineate
comments: the C method and the C++ method. Both are supported by mikroC.

C comments

C comment is any sequence of characters placed after the symbol pair /*. The
comment terminates at the first occurrence of the pair * / following the initial /*.
The entire sequence, including the four comment-delimiter symbols, is replaced by
one space after macro expansion.

In mikroC,

int /* type */ 1 /* identifier */;

parses as:

int i;

Note that mikroC does not support the nonportable token pasting strategy using
/** /. For more on token pasting, refer to Preprocessor topics.

C++ comments

mikroC allows single-line comments using two adjacent slashes (/ /). The com-
ment can start in any position, and extends until the next new line. The following
code,

int i; // this is a comment
int j;

parses as:

int i;
int j;

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 4ﬂ

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W“? de-

mikro ICD (In-Circuit Debugger)

mikro ICD is highly effective tool for Real-Time debugging on hardware level.
ICD debugger enables you to execute a mikroC program on a host PIC microcon-
troller and view variable values, Special Function Registers (SFR), memory and
EEPROM as the program is running.

If you have appropriate hardware and software for using mikro ICD then you have
to upon completion of writing your program to choose between Release build
Type or ICD Debug build type.

Project Setup]F'roiect Summar_l,l] Project Setup | Project Summar_l,l]
Device: Choose Release type Device:

BETE =l if you don't want to || [oiorses =l
Clock: use mikrolCD.

Clack:

008.000000 Hz 005000000 tHz

Build Type Build Type

™+ Releaze -4 " Release

" ICD debug I—b {* |CD debug

Choose ICD Debug
type if you want
to use mikrolCD
debug.

After you choose ICD Debug build type it's time to compile your project. After
you have successfully compiled your project you must program PIC using F11
shortcut. After successful PIC programming you have to select mikro ICD by
selecting Debugger » Select Debugger » mikro ICD Debugger from the drop-
down menu.

Debugger | Run Tools Help

i| Select Debugger » Software Pic Simulator

e | mikroliCD Debugger
L

x| [%] Led_Blin

—

42 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méap? ct simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

You can run the mikro ICD by selecting Run > Debug from the drop-down menu,
or by clicking Debug Icon . Starting the Debugger makes more options available:
Step Into, Step Over, Run to Cursor, etc. Line that is to be executed is color high-
lighted (blue by default). There is also notification about program execution and it
can be found on Watch Window (yellow status bar). Note that some functions take
time to execute, so running of program is indicated on Watch Window.

resnc |

void main(){

[C] Watch A= g|

1
4
3 char text[Zl]="mikroElektronika"; | = = =
4 char i=0; |;?} =t EE!
3 [add [add sl [Remave Al
gl [ORTD Select variable From list:
7 TRIZD = Ox00; |0ut char j
£ Search for wariable by assembly name:
9 Led Init (€PORTD); | Th]
0 Leod Cwd (LCD CLEAR) :
1 Led_Cwd(LCD_CURSOR_OFF) ; e e Address
Z))) Led_main_g... 25424 00015 L
3 For(i=l;i<iTris+) i Led_emd_st... 196 %0017 =
4 Lod Chril,i,text[i-1]); PORTD o RS
5y
5 TRISD 255 0x0F95
73 WREG 23z 0x0FES

craTie s FronEne hs]

Running. ..
page

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 4@

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

mikro ICD Debugger Options

Name Description Function Key
Debug Starts Debugger. [F9]
Run/ Pause
Debugger Run or pause Debugger. [F6]
Toggle breakpoint at the current cursor posi-

Toaal tion. To view all the breakpoints, select Run »

099"e View Breakpoints from the drop-down menu. [F5]
Breakpoints

Double clicking an item in window list
locates the breakpoint.

Execute all instructions between the current
Run to cursor [F4]
instruction and the cursor position.

Execute the current C (single— or
multi—cycle) instruction, then halt. If the
Step Into instruction is a routine call, enter the routine [F7]
and halt at the first instruction following the
call.

Execute the current C (single— or
multi—cycle) instruction, then halt. If the
instruction is a routine call, skip it and halt at
the first instruction following the call.

Flushes current PIC RAM. All variable val-
Flush RAM ues will be changed according to values from N/A
watch window.

Step Over [F8]

44 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mé{«m? ct simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

mikro ICD Debugger Example

Here is a step by step mikro ICD Debugger Example. First you have to write a
program. We will show how mikro ICD works using this example:

void main (){

char text[21] ="mikroElektronika";
char i=0;

PORTD
TRISD

0x00;
0x00;

Led Init (§PORTD) ;
Led Cmd (LCD_CLEAR) ;
Led Cmd (LCD_CURSOR_OFF) ;

for (i=1;1i<17;i++){
Led Chr(l,i, text[i-1]);

}
[StepNo.2 N

After successful compilation and PIC programming press F9
for starting mikro ICD. After mikro ICD initialization blue active line should

appear.
Run Tools Help

Q| B B-EEE & A EhBh |[oveieo | 8B E | @8
[x] led_test.c
L3 ilvoid main() { |§| Watch

z |;§1| E?E @, o9 @] $0 FlushRam

2 char text[Z2l]="mikroElektronika'"™:
e 4 char i=0: [acld [add sl [Remave Al

5 Select wariable from list:
@ & PORTD = 0Ox00; out char
L] 7 TRISD = Ox00: Search For variable by assembly name:

i &l
@ % Led Init (&PORTD)
@ 10 Led Cmd (LCD_CLEAR) ; Mame Value Address
@ 11 Led Cmd{LCD _CURSOR_OFF) ; Lcd_main_g... 8464 O0x0015 25

1z Led_emd_st... 192 0x0017 =
° 13 for(i=1;i<17:i++){ PORTD 1] 0x0F83
® 14 Led Chril, i,text[1i-1]); TRISD 255 Ox0F9S
| WREG 232 0x0FES
16 craTiE 1o nEne i

@ 17} PC= 0x000204 Idle

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 45

mikroC

MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dtW'n
Step No. 3

We will debug program line by line. Pressing F8 we are executing code line by
line. It is recommended that user does not use Step Into [F7] and Step Over [F8]
over Delays routines and routines containing delays. Instead use Run to cursor
[F4] and Breakpoints functions.

R [REINE) e
1B &am B RES
[%] lcd_test.c

L 1 void main(){ h'E”ﬁl

A BEER| v | s &E| F @B

z | & 08 el B0 Flush Ram
3 char text[Z1l]="mikroElektronika®™;
+ 4 G s i Guatinl Grenmedd fg
5 Seleck wariable from list:
® & PORTD = 0Ox00; |°“‘= Ehas =l
] 7 TRISD = 0x00;: Search for variable by assembly name:
8 | &l
& 5 Lod Init(PORTD):
® 10 Led Cmd(LCD_CLEAR) : Mame Walue Address
® 11 Led Cmd(LCD CURSOR_OFF) : Led_main_g... 3971 00015 ~
1z Lod_emd_ sk, 1 00017 I
® 13 for(i=1;i<17;i++){ PORTD 0 0x0F83
® 14 Led Chril, i, text[i-1]); TRISD 255 0x0F95
e 15 3 WREG 232 0x0FES
16 STATUS 18 0x0FDS
° 17 ol 100 fenEES -
pC=0x000252 |Idle |

All changes are read from PIC and loaded into Watch Window. Note that TRISD
changed its value from 255 to 0.

B e |RB-BXEE
[%] led_test.c

2AE BBE Wowddw s %E | T/ 0B

L] 1 void maini){ |§| Watch
£ | @, 0% @] ©0 FlushRam
3 char text[Z1l]="wikroElektronika";
® 4 char i=0; & Add Remave Properties &. Add Al [Remave Al
5 Select variable from list:
® ¢ PORTD = Ox00; [out char |
L] 7 TRISD = 0Ox00: Search For vatiable by assembly name:
8 | Ll
2 .
@ 10 Led Cmd(LCD CLEAR); Mame Yalue Address
@ 11 Leod Cmd(LCD CURZOR_OFF): Led_main_g.. 9464 0x0015 &
1z Led_cmd_st... 192 0x0017 b
@ 13 for(i=l;i<l7:i++){ PORTD 0 0:0F83
@ 14 Led Chril, i, text[i-1]): TRISD 0 0x0F95
S WREG 23z DxOFES
le cTaTic I FronEr b
e 17} PC=0x000258 Ide A

4@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mé{«m? ct simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Step No. 4

Step Into [F7] and Step Over [F8] are mikro ICD debugger functions that are used
in stepping mode. There is also Real-Time mode supported by mikro ICD.
Functions that are used in Real-Time mode are Run/ Pause Debugger [F6] and
Run to cursor [F4]. Pressing F4 goes to line selected by user. User just have to
select line with cursor and press F4, and code will be executed until selected line
is reached.

HUIL U mep

@ LRI HEE &#Am Bh |®voseloo | mBE || @

[%] lcd_test.c
e roid maini){ = IB!E!E]:

@
E"

1
z E?} EJJ E?z @y o &l 0 FlushRam
3 char text[Z21]="mikroElektronika®™;
S o i [add [dn add sl [Remove &l
£ Select variable from list:
® ¢ PORTD = 0x00; |out char =
= 7 = Search For variable by assembly name: .
8 | Ll
® 3 Lod Indit(PORTD);
® 10 Lod Cmd(LCD_CLELAR) Marne Walue Address
® 11 Lod Ced(LCD CURSOR OFF) ; Led_main_g... 3971 00015 ~
1z Led_cmd_st... 1 00017 n
@ 13 Ffor(i=1;i<17;i++){ PORTD o 0x0FS3
® 14 Led Chril, i, text[i-1]); TRISD 255 0:0F95
@ 15 1} WREG 232 0x0FES
1s STATUS 15 0:x0FDS
® 17} ol 1nn renFEG b
PC= 0000256 Idle

Run(Pause) Debugger [F6] and Toggle Breakpoints [F5] are mikro ICD debugger
functions that are used in Real-Time mode. Pressing FS marks line selected by
user for breakpoint. F6 executes code until breakpoint is reached. After reaching
breakpoint Debugger halts. Here at our example we will use breakpoints for writ-
ing "mikroElektronika" on LCD char by char. Breakpoint is set on LCD_Chr and
program will stop everytime this function is reached. After reaching breakpoint we
must press F6 again for continuing program execution.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 47

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W“? qu:

B | ap | DB-HKEE

@A@|'§ E&%lﬁ,noblenlﬂ@|§‘l@@

[%] lcd_test.c
@ 1 void main(){ —
z [C] wateh
3 char text[Z1l]="mikroElektronika™; = = = | & 0
ENERE & @] %0 Flush Ram
@ 4 char i=0; Lh La] t‘b v
5 [} Add Remove Froperties [} Add all [; Remove All
L] & PORTD = 0Ox00; Select variable from list:
® 7 TRISD = Ox00; |out char =
© Search for variable by assembly name:
L] 2 Led Init [&PORTD): I &I
L] 10 Led Cmd (LCD CLEAR);
EARSN Lo Cmd (LCD_CURSOFR_OFF) ; Mame Value Address
1z o . Led_main_g... 3971 0x0015 A
® 13 for(i=1;i<17:i++){ Led cmd st 1 0x0017 B
14 Lod Chril,i,texc[i-11);: F‘OF‘TTD - 16 0x0FES
@ 15 3
13 TRISD u] 0:x0F95
WREG 232 0x0FES
]
i cramic e renene ¥
|pc=oxo00z8E [1dle |

Breakpoints has been separated into two groups. There are hardware and software
break points. Hardware breakpoints are placed in PIC and they provide fastest
debug. Number of hardware breakpoints is limited (1 for P16 and 1 or 3 for P18).
If all hardware brekpoints are used, next breakpoints that will be used are software
breakpoint. Those breakpoints are placed inside mikro ICD, and they simulate
hardware breakpoints. Software breakpoints are much slower than hardware break-
points. This differences between hardware and software differences are not visible
in mikro ICD software but their different timings are quite notable, so it is impor-
tant to know that there is two types of breakpoints.

. PSR FFRENR R

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méut? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

mikro ICD (In-Circuit Debugger) Overview
Watch Window

Debugger Watch Window is the main Debugger window which allows you to
monitor program items while running your program. To show the Watch Window,
select View > Debug Windows » Watch Window from the drop-down menu.

The Watch Window displays variables and registers of PIC, with their addresses
and values. Values are updated as you go through the simulation. Use the drop-
down menu to add and remove the items that you want to monitor. Recently
changed items are colored red.

2 Eh (25 | % 0% &1 20 FushRam
[pdd [add Al [k Remave Al
Select variable from list:
[arugi |
Search For wariable by assembly name:
| Ll
Mame Walue Address
PORTC a 0x0FSZ ~
TRISC a 0x0F34
zl [t} 0x0015
x1 2185357674 0x0019
¥1 2169853968 0x001D
WREG 232 0x0FES
STATUS 15 0x0FDE
PCL 100 Ox0FF2
PCLATH 126 0x0FFA
PCLATU a 0x0FFE
TOsU a 0x0FFF
TOSH 7 0x0FFE
TOo5L 176 Ox0FFD
FSROL 233 0x0FES
FSROH 15 Ox0FEA
INDFO a 0x0FEF
FSRIL 2355 Ox0FEL
F3R1H a Ox0FEZ
INDF1 a 0x0FE7 e
PC= 0x000762 Idle

Double clicking an item opens the Edit Value window in which you can assign a
new value to the selected variable/register. Also, you can change view to binary,
hex, char, or decimal for the selected item.

|E| Edit Value

| 0
Representation

{* Dec ™ Hex " Bin " Float " Char
[signed [oK J [Cancel

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 4@

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

View EEPROM Window

mikro ICD EEPROM Window is available from the drop-down menu, View >
Debug Windows > View EEPROM.

The EEPROM window shows current values written into PIC internal EEPROM
memory. There are two action buttons concerning EEPROM watch window -
Flush EEPROM and Read EEPROM. Flush EEPROM writes data from EEP-
ROM window into PIC internal EEPROM memory. Read EEPROM reads data
from PIC internal EEPROM memory and loads it up in EEPROM window.

[C] EEPROM

Flush Eeprom Read EEprom

o

DDl1|02|03|D4|DS|06|D?|DSlDQlDA|DB|DC|DD|DE|DF|P‘5CH |A

oooo| FF | FF | FF FF FF | FF | FF FF | FF | FF FF FF | FF | FF FF | FF

oola| FF | FF FF | FF FF (FF FF | FF FF FF FF | FF FF FF FF | FF

ooza| FF | FF FF | FF FF (FF FF | FF FF FF FF | FF FF FF FF | FF

oozl FF | FF FF | FF FF (FF FF | FF FF FF FF | FF FF FF FF | FF

oosa| FF FF | FF | FF | FF FF | FF FF FF FF | FF FF FF | FF FF | FF

oosa| FF O FF | FF | FF | FF FF | FF FF FF FF | FF FF FF | FF FF | FF

oe0| FF | FF | FF FF FF | FF | FF FF | 45 |46 FF FF | FF | FF FF | FF

w70\ FF | FF | FF FF FF | FF | FF FF | FF | FF FF FF | FF | FF FF | FF

ooe0| FF | FF | FF FF FF | FF (FF FF | FF |(FF FF FF | FF | FF FF | FF

oosa| FF | FF FF | FF FF (FF FF | FF FF | FF FF | FF FF FF FF | FF

oos0| FF FF FF FF | FF FF | FF FF FF (FF FF | FF FF | FF FF FF

QoEa| FF | FF | FF | FF | FF FF | FF FF FF FF | FF FF FF | FF FF | FF

moco| FF O FF | FF | FF FF FF | FF | FF FF FF | FF FF | FF | FF | FF | FF

oooo| FE FF | FF FF FF | FF FF FF FF FF FF | FF FF | FF | FF FF

OEQ| FF | FF | FF FF FF | FF |(FF FF | FF | FF FF FF | FF | FF FF | FF

OOFO| FF | FF | FF FF FF | FF (FF FF | FF |(FF FF FF | FF | FF FF | FF

olooy oo o1 o0 00 00 | oo 00 oo o0 | 00 | oo oo oo 00 | OO0 | OO0 ceovvervne e

oiiog oo o1 o0 00 00 | oo 00 oo o0 | 00 | oo oo oo 00 | OO0 | OO0 ceovvervne e

0120 00 00 00 | OO0 00 00 |00 | 00 00 | Q0 | 00 | 90 | 00 | 00 90 | 00 | cceeeeseeniaens b
STATUS: Idle

5@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mé{«m? ct simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

View Code Window

mikro ICD View Code Window is available from the drop-down menu, View >
Debug Windows > View Code.

The View Code window shows code (hex code) written into PIC. There is action

button concerning View Code watch window - Read Code. Read Code reads
code from PIC and loads it up in View Code Window.

[€] Code EE]

Read Code
0o | 01 | 02 | 03 | 04 | 05 | 06 | 07 | ASCII bt

0000 DS EF 03 Fo FF FF FF FF O.7. <ETh= . a5
0008 0o 01 0B 54 0B BE 10 EF oo =S0HE L SNTE
0010 0o FO 0t 0E 03 £E 0z 54 - el
o018 01 23 0o B4 04 36 0z 32 <SOHZ . j....o<l
0oz0 FF 0E 1z oo oo 01 04 AE ¥o250m, <DC2s
0028 0z 9E 0o 0E 1z]] ot «STX> . 2. ., <50!
0030 i} 52 i} AE 2z EF 0o FO Tz, YT> @
0033 03 53 0z 65 oL 53 oo &8 <ETiz b, <5TH=
0040 u’3 36 0z 3z FF 0E 1z 0o “LlF= . 6., <5TH= .
0048 0o 01 0z 1 o 23 0o 23 oE50HD L 25T
0os0 0a 143 03 B oo 0E 1z an <B53= . j. <ET¥= . j
0058 0o 01 oc BQ 6F EF] Fo o £50H | <FF>
0080 0c Az 17 EF o FO 0E 23 <FF=. ¢, <ETH=.
0068 0o 0E 0z 64 86 EF 0o FO w50 2STHE
0070 Fo 0E 0z 14 o] ad 51 EF a4, <503, S5THE
0078 0o FO 0z 34 o 33 oF i} - L CH =
oos0 0z 26 01 35 FO 0B 01 £E <STH= & . «50H=
0088 0o 3 0OF 0B o 26 0o 38 - P A
0090 FO 0B 0o 6E 03 33 oF i} 4. a¥T=...n.<B
0098 0o 26 08 38 FO 0B 03 £E S wBSFLEL4.

<) 3

STATUS: Ide

page

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 5 ﬂ

MIKRODC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

View RAM Window

Debugger View RAM Window is available from the drop-down menu, View >

Debug Windows > View RAM.

The View RAM Window displays the map of PIC’s RAM, with recently changed
items colored red.

istory]
oolm|02|03|n4|oslus|o?|oa|09|uA|oB|nc|oD|DE|UF|F\SCH |’_‘
oooo| 30 oA | 330 082 10 58 DS 00 00 O0 10 00 02 80 45 00
E 04 |02 |00 |0 |00 | 3> | 0A | 33 | B2 | &M | BC | 10 | Bl |10 | 55 | 55
E 8l |6C |06 |00 | 26 00 | 6A BC |10 | Bl |10 | 58 S5 | & | 00| S0
E 0 00 08 10 80 82 00 S 80 06 OO OO B0 D2 00 2
E 82 |30 | AD B2 00 0Ol 00 00 00 00 00 09 04 | 04 10 | 10
H 23 | 14 40 00 5S4 00 Q0 02 00 02 00 04 00 | 40 00 @0
E 00 oD 00 00 01 8 00 00 04 40 0 00 81|00 00 OO
E 04 | ED | 41 00 00 0 02z 4l 00 S0 00 00 00 | 40 00 0O
E 40 05 00 0L 18 84 00 20 00 21 0L 00 00 | Q0 04 | &3
E 00 0D B0 04 00 40 00 30 20 20 00 00 10| 10 0O 02
E 2001 &0 00 15 S0 00 20 00 B0 00 OC 80 | 42 03 00
H 0 8 0 20 00 1A 00 00 B0 00 20 00 2 08 &1 &0
E 00 04 03 00 40 00 DO 30 00 0Ol 00 00 10| DA 2001
E 00 40 10 &80 40 80 0z 11 00 0l 00 B0 10 | o0 Ol | oo
E o0 00 00 03 80 20 80 30 10 0l 03 01 00| a0 S 08
E 00 10 40 00 00 00 00 20 00 05 00 00 00|03 04 00
— W

Common Errors

- Trying to program PIC while mikro ICD is active.
- Trying to debug Release build Type version of program.

- Trying to debug changed program code which hasn't been compiled and pro-

grammed into PIC.

- Trying to select line that is empty for Run to cursor [F4] and Toggle Breakpoints
[F5] functions.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS -

BoOooks - COMPILERS

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

TOKENS

Token is the smallest element of a C program that is meaningful to the compiler.
The parser separates tokens from the input stream by creating the longest token
possible using the input characters in a left—to—right scan.

mikroC recognizes following kinds of tokens:

- keywords,

- identifiers,

- constants,

- operators,

- punctuators (also known as separators).

Token Extraction Example

Here is an example of token extraction. Let’s have the following code sequence:

inter = a+++b;

First, note that inter would be parsed as a single identifier, rather than as the
keyword int followed by the identifier er.

The programmer who wrote the code might have intended to write
inter = a + (++b)

but it won’t work that way. The compiler would parse it as the following seven

tokens:

inter // identifier

= // assignment operator

a // identifier

++ // postincrement operator
+ // addition operator

b // identifier

; // semicolon separator

Note that +++ parses as ++ (the longest token possible) followed by +.

53 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

CONSTANTS

Constants or literals are tokens representing fixed numeric or character values.
mikroC supports:

- integer constants,

- floating point constants,

- character constants,

- string constants (strings literals),
- enumeration constants.

The data type of a constant is deduced by the compiler using such clues as numer-
ic value and the format used in the source code.

Integer Constants

Integer constants can be decimal (base 10), hexadecimal (base 16), binary (base
2), or octal (base 8). In the absence of any overriding suffixes, the data type of an
integer constant is derived from its value.

Long and Unsigned Suffixes

The suffix L (or 1) attached to any constant forces the constant to be represented
as a long. Similarly, the suffix U (or u) forces the constant to be unsigned. You
can use both L and U suffixes on the same constant in any order or case: ul, Lu,
UL, etc.

In the absence of any suffix (U, u, L, or 1), constant is assigned the “smallest” of
the following types that can accommodate its value: short, unsigned short,
int, unsigned int, long int, unsigned long int.

54 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Otherwise:

If the constant has a U or u suffix, its data type will be the first of the following
that can accommodate its value: unsigned short, unsigned int, unsigned
long int.

If the constant has an L or 1 suffix, its data type will be the first of the following
that can accommodate its value: long int, unsigned long int.

If the constant has both U and L suffixes, (ul, 1u, U1, 1U, uL, Lu, LU, or UL), its
data type will be unsigned long int.

Decimal Constants

Decimal constants from -2147483648 to 4294967295 are allowed. Constants
exceeding these bounds will produce an “Out of range” error. Decimal constants
must not use an initial zero. An integer constant that has an initial zero is interpret-
ed as an octal constant.

In the absence of any overriding suffixes, the data type of a decimal constant is
derived from its value, as shown below:

< -2147483648 Error: Out of range!
-2147483648 .. -32769 long

-32768 .. =129 int

-128 .. 127 short

128 .. 255 unsigned short

256 .. 32767 int

32768 .. 65535 unsigned int

65536 .. 2147483647 long

2147483648 .. 4294967295 unsigned long

> 4294967295 Error: Out of range!

Hexadecimal Constants

All constants starting with 0x (or 0X) are taken to be hexadecimal. In the absence
of any overriding suffixes, the data type of an hexadecimal constant is derived
from its value, according to the rules presented above. For example, 0xC367 will
be treated as unsigned int.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 55

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

Binary Constants

All constants starting with 0b (or 0B) are taken to be binary. In the absence of any
overriding suffixes, the data type of an binary constant is derived from its value,
according to the rules presented above. For example, 0b11101 will be treated as
short.

Octal Constants

All constants with an initial zero are taken to be octal. If an octal constant contains
the illegal digits 8 or 9, an error is reported. In the absence of any overriding suf-
fixes, the data type of an octal constant is derived from its value, according to the
rules presented above. For example, 0777 will be treated as int.

Floating Point Constants
A floating-point constant consists of:

- Decimal integer,

- Decimal point,

- Decimal fraction,

- e or E and a signed integer exponent (optional),
- Type suffix: f or F or 1 or L (optional).

You can omit either the decimal integer or the decimal fraction (but not both). You
can omit either the decimal point or the letter e (or E) and the signed integer expo-
nent (but not both). These rules allow for conventional and scientific (exponent)
notations.

Negative floating constants are taken as positive constants with the unary operator
minus (-) prefixed.

mikroC limits floating-point constants to range
+1.17549435082E38 .. *£6.80564774407E38.

mikroC floating-point constants are of type double. Note that mikroC’s imple-
mentation of ANSI Standard considers f1oat and double (together with the
long double variant) to be the same type.

5@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mé{«”? ctawu«ﬂée... MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Character Constants

A character constant is one or more characters enclosed in single quotes, such as
'A', '+',0or '"\'n'. In C, single-character constants have data type int. Multi-
character constants are referred to as string constants or string literals. For more
information refer to String Constants.

Escape Sequences

The backslash character (\) is used to introduce an escape sequence, which allows
the visual representation of certain nongraphic characters. One of the most com-
mon escape constants is the newline character (\ n).

A backslash is used with octal or hexadecimal numbers to represent the ASCII
symbol or control code corresponding to that value; for example, '\ x3F"' for the
question mark. You can use any string of up to three octal or any number of hexa-
decimal numbers in an escape sequence, provided that the value is within legal
range for data type char (0 to OxFF for mikroC). Larger numbers will generate the
compiler error “Numeric constant too large”.

For example, the octal number \ 777 is larger than the maximum value allowed
(\ 377) and will generate an error. The first nonoctal or nonhexadecimal character
encountered in an octal or hexadecimal escape sequence marks the end of the
sequence.

Note: You must use \\ to represent an ASCII backslash, as used in operating sys-
tem paths.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 57

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

The following table shows the available escape sequences in mikroC:

Sequence Value Char What it does
\a 0x07 BEL Audible bell
\b 0x08 BS Backspace
\ £ 0x0C FF Formfeed
\n 0x0A LF Newline (Linefeed)
\r 0x0D CR Carriage Return
\t 0x09 HT Tab (horizontal)
\v 0x0B VT Vertical Tab
\\ 0x5C \ Backslash
, Single quote
' 27
\ 0x (Apostrophe)
\ " 0x22 " Double quote
\? 0x3F ? Question mark
O = string of up to 3
\O any octal digits
\ xH any H= strlng of hex dig-
1ts
\ XH any H= strmg of hex dig-

1ts

5 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

making & slmple... b MIKROGC - G CoMPILER FOR MIGROCHIP PIG MICROCONTROLLERS
String Constants
String constants, also known as string literals, are a special type of constants
which store fixed sequences of characters. A string literal is a sequence of any
number of characters surrounded by double quotes:
"This is a string."
The null string, or empty string, is written like "". A literal string is stored inter-
nally as the given sequence of characters plus a final null character. A null string is
stored as a single null character.

The characters inside the double quotes can include escape sequences, e.g.

"\ t\ "Name\ "\\\ tAddress\n\n"

Adjacent string literals separated only by whitespace are concatenated during the
parsing phase. For example:

"This is "™ "just"
" an example."

is an equivalent to
"This is just an example."
Line continuation with backslash

You can also use the backslash (\) as a continuation character to extend a string
constant across line boundaries:

"This is really \
a one-line string."

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 5@

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

Enumeration Constants

Enumeration constants are identifiers defined in enum type declarations. The iden-
tifiers are usually chosen as mnemonics to assist legibility. Enumeration constants
are of int type. They can be used in any expression where integer constants are
valid.

For example:
enum weekdays {SUN = 0, MON, TUE, WED, THU, FRI, SAT};

The identifiers (enumerators) used must be unique within the scope of the enum
declaration. Negative initializers are allowed. See Enumerations for details of
enum declarations.

Pointer Constants

A pointer or the pointed-at object can be declared with the const modifier.
Anything declared as a const cannot be have its value changed. It is also illegal
to create a pointer that might violate the nonassignability of a constant object.

Constant Expressions

A constant expression is an expression that always evaluates to a constant and
consists only of constants (literals) or symbolic constants. It is evaluated at com-
pile-time and it must evaluate to a constant that is in the range of representable
values for its type. Constant expressions are evaluated just as regular expressions
are.

Constant expressions can consist only of the following: literals, enumeration con-
stants, simple constants (no constant arrays or structures), sizeof operators.

Constant expressions cannot contain any of the following operators, unless the
operators are contained within the operand of a sizeof operator: assignment,

comma, decrement, function call, increment.

You can use a constant expression anywhere that a constant is legal.

@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

KEYWORDS

Keywords are words reserved for special purposes and must not be used as normal
identifier names.

Beside standard C keywords, all relevant SFR are defined as global variables and
represent reserved words that cannot be redefined (for example: TMRO, PCL, etc).
Probe the Code Assistant for specific letters (Ctrl+Space in Editor) or refer to
Predefined Globals and Constants.

Here is the alphabetical listing of keywords in C:

asm enum signed
auto extern sizeof
break float static
case for struct
char goto switch
const if typedef
continue int union
default long unsigned
do register void
double return volatile
else short while

Also, mikroC includes a number of predefined identifiers used in libraries. You
could replace these by your own definitions, if you plan to develop your own
libraries. For more information, see mikroC Libraries.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @ ﬂ

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

IDENTIFIERS

Identifiers are arbitrary names of any length given to functions, variables, symbol-
ic constants, user-defined data types, and labels. All these program elements will
be referred to as objects throughout the help (not to be confused with the meaning
of object in object-oriented programming).

331

Identifiers can contain the letters a to z and A to z, the underscore character “ ”,

and the digits 0 to 9. The only restriction is that the first character must be a letter
or an underscore.

Case Sensitivity

mikroC identifiers are not case sensitive at present, so that Sum, sum, and suM rep-
resent an equivalent identifier. However, future versions of mikroC will offer the
option of activating/suspending case sensitivity. The only exceptions at present are
the reserved words main and interrupt which must be written in lowercase.

Uniqueness and Scope

Although identifier names are arbitrary (within the rules stated), errors result if the
same name is used for more than one identifier within the same scope and sharing
the same name space. Duplicate names are legal for different name spaces regard-
less of scope rules. For more information on scope, refer to Scope and Visibility.

@2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikro!: .

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

PUNCTUATORS

The mikroC punctuators (also known as separators) include brackets, parentheses,
braces, comma, semicolon, colon, asterisk, equal sign, and pound sign. Most of
these punctuators also function as operators.

Brackets

Brackets[] indicate single and multidimensional array subscripts:

char ch, str[] = "mikro";

int mat[3][4] ; /* 3 x 4 matrix */
ch = str[3] ; /* 4th element */
Parentheses

Parentheses () are used to group expressions, isolate conditional expressions,
and indicate function calls and function parameters:

d=c¢c* (a + b); /* override normal precedence */
if (d == z) ++x; /* essential with conditional statement */
func () ; /* function call, no args */

void func2(int n); /* function declaration with parameters */

Parentheses are recommended in macro definitions to avoid potential precedence
problems during expansion:

#define CUBE (x) ((x)* (x)* (x))

For more information, refer to Expressions and Operators Precedence.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @@

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Braces { } indicate the start and end of a compound statement:

if (d == z) {
++x;
func () ;

The closing brace serves as a terminator for the compound statement, so a semi-
colon is not required after the } , except in structure declarations. Often, the semi-
colon is illegal, as in

if (statement)
{ .0} /* illegal semicolon! */
else

{ ... 13

For more information, refer to Compound Statements.

Comma
The comma (,) separates the elements of a function argument list:
void func(int n, float f, char ch);

The comma is also used as an operator in comma expressions. Mixing the two
uses of comma is legal, but you must use parentheses to distinguish them. Note
that (expl, exp2) evalutates both but is equal to the second:

/* call func with two args */
func (i, 3j);

/* also calls func with two args! */
func ((expl, exp2), (exp3, expd, expd));

@4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Semicolon

The semicolon (;) is a statement terminator. Any legal C expression (including the
empty expression) followed by a semicolon is interpreted as a statement, known as
an expression statement. The expression is evaluated and its value is discarded. If
the expression statement has no side effects, mikroC might ignore it.

a + b; /* evaluate a + b, but discard value */
++a; /* side effect on a, but discard value of ++a */
; /* empty expression or a null statement */

Semicolons are sometimes used to create an empty statement:
for (i = 0; i < n; i++) ;

For more information, see Statements.

Colon

Use the colon (:) to indicate a labeled statement. For example:
start: x = 0;

goto start;

Labels are discussed in Labeled Statements.

Asterisk (Pointer Declaration)
The asterisk (*) in a declaration denotes the creation of a pointer to a type:
char *char ptr; /* a pointer to char is declared */

You can also use the asterisk as an operator to either dereference a pointer or as
the multiplication operator:

i = *char ptr;

For more information, see Pointers.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @5

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Equal Sign
The equal sign (=) separates variable declarations from initialization lists:

int test[5] = {1, 2, 3, 4, 5};
int x = 5;

The equal sign is also used as the assignment operator in expressions:

int a, b, c;
a=>b + c;

For more information, see Assignment Operators.

Pound Sign (Preprocessor Directive)

The pound sign (#) indicates a preprocessor directive when it occurs as the first
nonwhitespace character on a line. It signifies a compiler action, not necessarily
associated with code generation. See Preprocessor Directives for more informa-
tion.

and ## are also used as operators to perform token replacement and merging
during the preprocessor scanning phase. See Preprocessor Operators.

@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééoﬂ? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

OBJECTS AND LVALUES
Objects

An object is a specific region of memory that can hold a fixed or variable value
(or set of values). To prevent confusion, this use of the word object is different
from the more general term used in object-oriented languages. Our definiton of the
word would encompass functions, variables, symbolic constants, user-defined data
types, and labels.

Each value has an associated name and type (also known as a data type). The
name is used to access the object. This name can be a simple identifier, or it can
be a complex expression that uniquely references the object.

Objects and Declarations

Declarations establish the necessary mapping between identifiers and objects.
Each declaration associates an identifier with a data type.

Associating identifiers with objects requires each identifier to have at least two
attributes: storage class and type (sometimes referred to as data type). The mikroC
compiler deduces these attributes from implicit or explicit declarations in the
source code. Commonly, only the type is explicitly specified and the storage class
specifier assumes automatic value auto.

Generally speaking, an identifier cannot be legally used in a program before its
declaration point in the source code. Legal exceptions to this rule (known as for-
ward references) are labels, calls to undeclared functions, and struct or union tags.

The range of objects that can be declared includes:

variables; functions; types; arrays of other types; structure, union, and enumeration
tags; structure members; union members; enumeration constants; statement labels;
Preprocessor macros.

The recursive nature of the declarator syntax allows complex declarators. You’ll
probably want to use typedefs to improve legibility if constructing complex
objects.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @7

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

An Ivalue is an object locator: an expression that designates an object. An example
of an lvalue expression is * P, where P is any expression evaluating to a non-null
pointer. A modifiable Ivalue is an identifier or expression that relates to an object
that can be accessed and legally changed in memory. A const pointer to a constant,
for example, is not a modifiable lvalue. A pointer to a constant can be changed
(but its dereferenced value cannot).

Historically, the / stood for “/eft”’, meaning that an lvalue could legally stand on
the left (the receiving end) of an assignment statement. Now only modifiable lval-
ues can legally stand to the left of an assignment operator. For example, if a and b
are nonconstant integer identifiers with properly allocated memory storage, they
are both modifiable lvalues, and assignments suchasa = landb = a + b are
legal.

Rvalues
The expression a + b isnot an lvalue: a + b = a is illegal because the expres-

sion on the left is not related to an object. Such expressions are sometimes called
rvalues (short for right values).

@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

SCOPE AND VISIBILITY

Scope

The scope of identifier is the part of the program in which the identifier can be
used to access its object. There are different categories of scope: block (or local),
function, function prototype, and file. These depend on how and where identifiers
are declared.

Block Scope

The scope of an identifier with block (or local) scope starts at the declaration point
and ends at the end of the block containing the declaration (such a block is known
as the enclosing block). Parameter declarations with a function definition also
have block scope, limited to the scope of the function body.

File Scope
File scope identifiers, also known as globals, are declared outside of all blocks;
their scope is from the point of declaration to the end of the source file.

Function Scope

The only identifiers having function scope are statement labels. Label names can
be used with goto statements anywhere in the function in which the label is
declared. Labels are declared implicitly by writing label name: followed by a
statement. Label names must be unique within a function.

Function Prototype Scope

Identifiers declared within the list of parameter declarations in a function proto-
type (not part of a function definition) have function prototype scope. This scope
ends at the end of the function prototype.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @@

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Visibility

The visibility of an identifier is that region of the program source code from which
legal access can be made to the identifier’s associated object.

Scope and visibility usually coincide, though there are circumstances under which
an object becomes temporarily hidden by the appearance of a duplicate identifier:

the object still exists but the original identifier cannot be used to access it until the
scope of the duplicate identifier is ended.

Technically, visibility cannot exceed scope, but scope can exceed visibility. Take a
look at the following example:

void f (int 1) {

int j; // auto by default

j o= 3; // int 1 and j are in scope and visible
{ // nested block
double 7; // j 1is local name in the nested block
3 = 0.1; // 1 and double j are visible;

// int j = 3 1in scope but hidden

// double j out of scope
j o+= 1; // int j visible and = 4
}
// 1 and j are both out of scope

7@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

NAME SPACES

Name space is the scope within which an identifier must be unique. C uses four
distinct categories of identifiers:

Goto label names
These must be unique within the function in which they are declared.

Structure, union, and enumeration tags
These must be unique within the block in which they are defined. Tags declared
outside of any function must be unique.

Structure and union member names

These must be unique within the structure or union in which they are defined.
There is no restriction on the type or offset of members with the same member
name in different structures.

Variables, typedefs, functions, and enumeration members
These must be unique within the scope in which they are defined. Externally
declared identifiers must be unique among externally declared variables.

Duplicate names are legal for different name spaces regardless of scope rules.

For example:
int blue = 73;
{ // open a block
enum colors { black, red, green, blue, violet, white } c;

/* enumerator blue hides outer declaration of int blue */

struct colors { int i, J; };
// ILLEGAL: colors duplicate tag

double red = 2;
// ILLEGAL: redefinition of red

blue = 37; // back in int blue scope

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 7 ﬂ

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

DURATION

Duration, closely related to storage class, defines the period during which the
declared identifiers have real, physical objects allocated in memory. We also dis-
tinguish between compile-time and run-time objects. Variables, for instance, unlike
typedefs and types, have real memory allocated during run time. There are two
kinds of duration: static and local.

Static Duration

Memory is allocated to objects with static duration as soon as execution is under-
way; this storage allocation lasts until the program terminates. Static duration
objects usually reside in fixed data segments allocated according to the memory
model in force. All globals have static duration. All functions, wherever defined,
are objects with static duration. Other variables can be given static duration by
using the explicit static or extern storage class specifiers.

In mikroC, static duration objects are not initialized to zero (or null) in the absence
of any explicit initializer.

An object can have static duration and local scope — see the example on the fol-
lowing page.

Local Duration

Local duration objects are also known as automatic objects. They are created on
the stack (or in a register) when the enclosing block or function is entered. They
are deallocated when the program exits that block or function. Local duration

objects must be explicitly initialized; otherwise, their contents are unpredictable.

The storage class specifier auto can be used when declaring local duration vari-
ables, but is usually redundant, because auto is the default for variables declared
within a block.

An object with local duration also has local scope, because it does not exist out-
side of its enclosing block. The converse is not true: a local scope object can have
static duration.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méém? ct simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Here is an example of two objects with local scope, but with different duration:

void f () {
/* local duration var; init a upon every call to f */
int a = 1;

/* static duration var; init b only upon 1st call to f */
static int b = 1;

/* checkpoint! */
at+;
b++;

void main () {

/* At checkpoint, we will have: */

£(); // a=1, b=1, after first call,

£(); // a=1, b=2, after second call,

£(); // a=1, b=3, after third call,
// etc.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ?@

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

C is strictly typed language, which means that every object, function, and expres-
sion need to have a strictly defined type, known in the time of compilation. Note
that C works exclusively with numeric types.

The type serves:

- to determine the correct memory allocation required initially,
- to interpret the bit patterns found in the object during subsequent accesses,
- in many type-checking situations, to ensure that illegal assignments are trapped.

mikroC supports many standard (predefined) and user-defined data types, includ-
ing signed and unsigned integers in various sizes, floating-point numbers in vari-
ous precisions, arrays, structures, and unions. In addition, pointers to most of these
objects can be established and manipulated in memory.

The type determines how much memory is allocated to an object and how the pro-
gram will interpret the bit patterns found in the object’s storage allocation. A given
data type can be viewed as a set of values (often implementation-dependent) that
identifiers of that type can assume, together with a set of operations allowed on
those values. The compile-time operator, sizeof, lets you determine the size in
bytes of any standard or user-defined type.

The mikroC standard libraries and your own program and header files must pro-
vide unambiguous identifiers (or expressions derived from them) and types so that
mikroC can consistently access, interpret, and (possibly) change the bit patterns in
memory corresponding to each active object in your program.

Type Categories

The fudamental types represent types that cannot be separated into smaller parts.
They are sometimes referred to as unstructured types. The fundamental types are
void, char, int, float, and double, together with short, long, signed, and
unsigned variants of some of these.

The derived types are also known as structured types. The derived types include
pointers to other types, arrays of other types, function types, structures, and
unions.

74 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méut? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

FUNDAMENTAL TYPES
Arithmetic Types

The arithmetic type specifiers are built from the following keywords: void, char,
int, float, and double, together with prefixes short, long, signed, and
unsigned. From these keywords you can build the integral and floating-point
types. Overview of types is given on the following page.

Integral Types

Types char and int, together with their variants, are considered integral data
types. Variants are created by using one of the prefix modifiers short, long,
signed, and unsigned.

The table below is the overview of the integral types — keywords in parentheses
can be (and often are) omitted.

The modifiers signed and unsigned can be applied to both char and int. In
the absence of unsigned prefix, signed is automatically assumed for integral types.
The only exception is the char, which is unsigned by default. The keywords
signed and unsigned, when used on their own, mean signed int and
unsigned int, respectively.

The modifiers short and long can be applied only to the int. The keywords
short and long used on their own mean short int and long int, respective-

ly.
Floating-point Types

Types float and double, together with the 1ong double variant, are consid-
ered floating-point types. mikroC’s implementation of ANSI Standard considers all
three to be the same type.

Floating point in mikroC is implemented using the Microchip AN575 32-bit for-
mat (IEEE 754 compliant).

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 75

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Below is the overview of arithmetic types:

Type Size Range
(unsigned) char 8-bit 0. 255
signed char 8-bit - 128 .. 127
(signed) short (int) 8-bit - 128 .. 127
unsigned short (int) 8-bit 0.. 255
(signed) int 16-bit -32768 .. 32767
unsigned (int) 16-bit 0 .. 65535
(signed) long (int) 32-bit -2147483648 .. 2147483647
unsigned long (int) 32-bit 0..4294967295
float 32-bit +1.17549435082E-38 ..
oa ot +6.80564774407E38
doubl 32-bit +1.17549435082E-38 ..
oubLe ot +6.80564774407E38
1 doubl 32-bit +1.17549435082E-38 ..
ong double o1 +6.80564774407E38

7@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mé{«lﬂ? ctawkzﬂée... MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Enumerations

An enumeration data type is used for representing an abstract, discreet set of val-
ues with appropriate symbolic names.

Enumeration Declaration
Enumeration is declared like this:
enum tag { enumeration-1list} ;

Here, tag is an optional name of the enumeration; enumeration-1ist is a list
of discreet values, enumerators. The enumerators listed inside the braces are also
known as enumeration constants. Each is assigned a fixed integral value. In the
absence of explicit initializers, the first enumerator is set to zero, and each suc-
ceeding enumerator is set to one more than its predecessor.

Variables of enum type are declared same as variables of any other type. For
example, the following declaration

enum colors {black, red, green, blue, violet, white} c;

establishes a unique integral type, colors, a variable c of this type, and a set of
enumerators with constant integer values (black = 0,red = 1,..).InC,a
variable of an enumerated type can be assigned any value of type int — no type
checking beyond that is enforced. That is:

c = red; // OK
c = 1; // Also OK, means the same

With explicit integral initializers, you can set one or more enumerators to specific
values. The initializer can be any expression yielding a positive or negative integer
value (after possible integer promotions). Any subsequent names without initializ-
ers will then increase by one. These values are usually unique, but duplicates are
legal.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 77

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

The order of constants can be explicitly re-arranged. For example:

enum colors { black, // value 0
red, // value 1
green, // value 2
blue=6, // value 6
violet, // value 7
white=4 }; // value 4

Initializer expression can include previously declared enumerators. For example,
in the following declaration:

enum memory sizes { bit = 1, nibble = 4 * bit,
byte = 2 * nibble, kilobyte = 1024 * Dbyte };

nibble would acquire the value 4, byte the value 8, and kilobyte the value
8192.

Anonymous Enum Type

In our previous declaration, the identifier colors is the optional enumeration tag
that can be used in subsequent declarations of enumeration variables of type
colors:

enum colors bg, border; // declare variables bg and border

As with struct and union declarations, you can omit the tag if no further variables
of this enum type are required:

/* Anonymous enum type: */

enum { black, red, green, blue, violet, white} color;

Enumeration Scope

Enumeration tags share the same name space as structure and union tags.
Enumerators share the same name space as ordinary variable identifiers. For more
information, consult Name Spaces.

7 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méut? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Void Type

void is a special type indicating the absence of any value. There are no objects of
void; instead, void is used for deriving more complex types.

Void Functions

Use the void keyword as a function return type if the function does not return a
value. For example:

void print temp (char temp) ({
Lcd Out Cp ("Temperature:");
Lcd Out Cp (temp) ;
Lcd Chr Cp(223); // degree character
Led Chr Cp('C');

Use void as a function heading if the function does not take any parameters.
Alternatively, you can just write empty parentheses:

main (void) { // same as main /()

}

Generic Pointers

Pointers can be declared as void, meaning that they can point to any type. These
pointers are sometimes called generic.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 7@

MIKRODC -

C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W qu-

DERIVED TYPES

The derived types are also known as structured types. These types are used as ele-
ments in creating more complex user-defined types.

Arrays

Array is the simplest and most commonly used structured type. Variable of array
type is actually an array of objects of the same type. These objects represent ele-
ments of an array and are identified by their position in array. An array consists of
a contiguous region of storage exactly large enough to hold all of its elements.

Array Declaration

Array declaration is similar to variable declaration, with the brackets added after
identifer:

type array name| constant-expression]

This declares an array named as array name composed of elements of type.
The type can be scalar type (except void), user-defined type, pointer, enumera-
tion, or another array. Result of the constant-expression within the brackets
determines the number of elements in array. If an expression is given in an array
declarator, it must evaluate to a positive constant integer. The value is the number
of elements in the array.

Each of the elements of an array is numbered from 0 through the number of ele-
ments minus one. If the number is n, elements of array can be approached as
variables array namel 0] .. array namel n-1] of type.

Here are a few examples of array declaration:

#define MAX = 50

int vector one[10]; /* an array of 10 integers */
float vector two[MAX] ; /* an array of 50 floats */
float vector three[MAX - 20] ; /* an array of 30 floats */

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Array Initialization

Array can be initialized in declaration by assigning it a comma-delimited sequence
of values within braces. When initializing an array in declaration, you can omit the
number of elements — it will be automatically determined acording to the number
of elements assigned. For example:

/* An array which holds number of days in each month: */
int days[12] = {31,28,31,30,31,30,31,31,30,31,30,31};

/* This declaration is identical to the previous one */
int days[] = {31,28,31,30,31,30,31,31,30,31,30,31};

If you specify both the length and starting values, the number of starting values
must not exceed the specified length. Vice versa is possible, when the trailing
“excess” elements will be assigned some encountered runtime values from memo-

ry.
In case of array of char, you can use a shorter string literal notation. For example:
/* The two declarations are identical: */

const char msgl[] = {'T', 'e', 's', 't', "\0'};
const char msg2[] = "Test";

For more information on string literals, refer to String Constants.
Arrays in Expressions
When name of the array comes up in expression evaluation (except with operators

& and sizeof), it is implicitly converted to the pointer pointing to array’s first
element. See Arrays and Pointers for more information.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Multi-dimensional Arrays

An array is one-dimensional if it is of scalar type. One-dimensional arrays are
sometimes referred to as vectors.

Multidimensional arrays are constructed by declaring arrays of array type. These
arrays are stored in memory in such way that the right most subscript changes
fastest, i.e. arrays are stored “in rows”. Here is a sample 2-dimensional array:

float m[50][20] ; /* 2-dimensional array of size 50x20 */

Variable m is an array of 50 elements, which in turn are arrays of 20 floats each.
Thus, we have a matrix of 50x20 elements: the first element is m[0] [0] , the last
one ism 49][19] . First element of the 5th row would be m{ 0][5] .

If you are not initializing the array in the declaration, you can omit the first dimen-
sion of multi-dimensional array. In that case, array is located elsewhere, e.g. in
another file. This is a commonly used technique when passing arrays as function
parameters:

int af 31[21[4] ; /* 3-dimensional array of size 3x2x4 */

void func(int n[][2][4]) { /* we can omit first dimension */
Y
n[21[1][3] ++; /* increment the last element*/
}/ /S~
void main () {
Y
func(a);
3/~

You can initialize a multi-dimensional array with an appropriate set of values
within braces. For example:

int a[3][2] = {{1,2}, (2,6}, {3,7}};

2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méé&? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Pointers

Pointers are special objects for holding (or “pointing to”’) memory addresses. In C,
address of an object in memory can be obtained by means of unary operator &. To
reach the pointed object, we use indirection operator (*) on a pointer.

A pointer of type “pointer to object of type” holds the address of (that is, points to)
an object of type. Since pointers are objects, you can have a pointer pointing to a
pointer (and so on). Other objects commonly pointed at include arrays, structures,
and unions.

A pointer to a function is best thought of as an address, usually in a code segment,
where that function’s executable code is stored; that is, the address to which con-
trol is transferred when that function is called.

Although pointers contain numbers with most of the characteristics of unsigned
integers, they have their own rules and restrictions for declarations, assignments,
conversions, and arithmetic. The examples in the next few sections illustrate these
rules and restrictions.

Note: Currently, mikroC does not support pointers to functions, but this feature
will be implemented in future versions.

Pointer Declarations

Pointers are declared same as any other variable, but with * ahead of identifier.
Type at the beginning of declaration specifies the type of a pointed object. A point-
er must be declared as pointing to some particular type, even if that type is void,
which really means a pointer to anything. Pointers to void are often called gener-
ic pointers, and are treated as pointers to char in mikroC.

If type is any predefined or user-defined type, including void, the declaration
type *p; /* Uninitialized pointer */
declares p to be of type “pointer to type”. All the scoping, duration, and visibility

rules apply to the p object just declared. You can view the declaration in this way:
if *p is an object of type, then p has to be a pointer to such objects.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 3

mikro

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Note: You must initialize pointers before using them! Our previously declared
pointer * p is not initialized (i.e. assigned a value), so it cannot be used yet.

Note: In case of multiple pointer declarations, each identifier requires an indirect
operator. For example:

int *pa, *pb, *pc;
/* is same as: */

int *pa;
int *pb;
int *pc;

Once declared, though, a pointer can usually be reassigned so that it points to an
object of another type. mikroC lets you reassign pointers without typecasting, but
the compiler will warn you unless the pointer was originally declared to be point-
ing to void. You can assign a void pointer to a non-void pointer — refer to Void
Type for details.

Null Pointers

A null pointer value is an address that is guaranteed to be different from any valid
pointer in use in a program. Assigning the integer constant 0 to a pointer assigns a
null pointer value to it. Instead of zero, the mnemonic NULL (defined in the stan-
dard library header files, such as stdio.h) can be used for legibility. All pointers
can be successfully tested for equality or inequality to NULL.

For example:

int *pn = 0; /* Here's one null pointer */
int *pn = NULL; /* This is an equivalent declaration */

/* We can test the pointer like this: */

if (pn == y { ...}
/* .. or like this: */
if (pn == NULL) { ...}

4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Function Pointers
Function Pointers are pointers, i.e. variables, which point to the address of a func-
tion.

// Define a function pointer

int (*pt2Function) (float, char, char);

Note: Thus functions and function pointers with different calling convention
(argument order, arguments type or return type is different) are incompatible with
each other. Check Indirect Function Calls.

Assign an address to a Function Pointer

It's quite easy to assign the address of a function to a function pointer. You simply
take the name of a suitable and known function or member function. It's optional
to use the address operator & infront of the function's name.

//Assign an address to the function pointer

int DoIt (float a, char b, char c){ return atb+c; }
pt2Function = &Dolt; // assignment

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 5

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W“? de-

Example:
int addC(char x,char y){

return x+y;

int subC(char x,char y){

return x-y;

int mulC(char x,char y){

return x*y;

int divC(char x,char y){

return x/y;

int modC (char x,char y){

return x%y;

//array of pointer to functions that receive two chars and returns
int

int (*arrpf[]) (char,char) = { addC ,subC,mulC,divC,modC} ;
int res;
char i;
void main () {
for (i=0;i<5;i++){

res = arrpf[i] (10,20);

Y/~

@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Pointer Arithmetic

Pointer arithmetic in C is limited to:

- assigning one pointer to another,

- comparing two pointers,

- comparing pointer to zero (NULL),

- adding/subtracting pointer and an integer value,

- subtracting two pointers.

The internal arithmetic performed on pointers depends on the memory model in
force and the presence of any overriding pointer modifiers. When performing
arithmetic with pointers, it is assumed that the pointer points to an array of
objects.

Arrays and Pointers

Arrays and pointers are not completely independent types in C. When name of the
array comes up in expression evaluation (except with operators & and sizeof), it
is implicitly converted to the pointer pointing to array’s first element. Due to this
fact, arrays are not modifiable lvalues.

Brackets[] indicate array subscripts. The expression

id exp]

is defined as

*((id) + (exp))

where either:

idis a pointer and exp is an integer, or
idis an integer and exp is a pointer.

The following is true:

&al 1i] a + i
al 1] = *(a + 1)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 7

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

According to these guidelines, we can write:

pa = é&al 4] ; // pa points to afl4]
x = *(pa + 3); // x = al7]
y = *pa + 3; // y = al4] + 3

Also, you need to be careful with operator precedence:

*pat+; // 1s equal to *(pa++), increments the pointer!
(*pa) ++; // increments the pointed object!

Following examples are also valid, but better avoid this syntax as it can make the

code really illegible:

(a + 1)[1] = 3;

// same as: *((a + 1) + 1) = 3, i.e. a[i + 1] = 3
(1 + 2)[a] = 0;

// same as: *((i + 2) + a) =0, 1i.e. a[i + 2] =0

Assignment and Comparison

You can use a simple assignment operator (=) to assign value of one pointer to
another if they are of the same type. If they are of different types, you must use a
typecast operator. Explicit type conversion is not necessary if one of the pointers is
generic (of void type).

Assigning the integer constant 0 to a pointer assigns a null pointer value to it. The
mnemonic NULL (defined in the standard library header files, such as stdio.h)
can be used for legibility.

Two pointers pointing into the same array may be compared by using relational
operators ==, ! =, <, <=, >, and >=. Results of these operations are same as if they
were used on subscript values of array elements in question:

int *pa = &a[4], *pb = &a[2] ;

if (pa > pb) {
// this will be executed as 4 1s greater than 2

}

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mé{«lﬂ? ctawkzﬂée... MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

You can also compare pointers to zero value — this tests if pointer actually points
to anything. All pointers can be successfully tested for equality or inequality to

NULL:
if (pa == NULL) { ...}
if (pb != NULL) { ...}

Note: Comparing pointers pointing to different objects/arrays can be performed at
programmer’s responsibility — precise overview of data’s physical storage is
required.

Pointer Addition

You can use operators +, ++, and += to add an integral value to a pointer. The
result of addition is defined only if pointer points to an element of an array and if
the result is a pointer pointing into the same array (or one element beyond it).

If a pointer is declared to point to type, adding an integral value to the pointer
advances the pointer by that number of objects of type. Informally, you can think
of p+n as advancing the pointer P by (n*sizeof (type)) bytes, as long as the
pointer remains within the legal range (first element to one beyond the last ele-
ment). If type has size of 10 bytes, then adding 5 to a pointer to type advances
the pointer 50 bytes in memory. In case of void type, size of the step is one byte.

For example:

int a[10] ; // array a containing 10 elements of int
int *pa = &a[0] ; // pa 1s pointer to int, pointing to a[0]
*(pa + 3) = 6; // pa+3 is a pointer pointing to a[3],

// so a[3] now equals 6
pat++; // pa now points to the next element of array, al[l]

There is no such element as “one past the last element”, of course, but a pointer is
allowed to assume such a value. C “guarantees” that the result of addition is
defined even when pointing to one element past array. If P points to the last array
element, P+1 is legal, but P+2 is undefined.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @

mikroC

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

This allows you to write loops which access the array elements in a sequence by
means of incrementing pointer — in the last iteration you will have a pointer
pointing to one element past an array, which is legal. However, applying the indi-
rection operator (*) to a “pointer to one past the last element” leads to undefined
behavior.

For example:

void f (some type a[], int n) {
/* function f handles elements of array a; */
/* array a has n elements of some type */

int i;
some _type *p = &a[0] ;

for (i = 0; i < n; i++) {
/* .. here we do something with *p .. */
pt+; /* .. and with the last iteration p exceeds

the last element of array a */

}
/* at this point, *p is undefined! */

Pointer Subtraction

Similar to addition, you can use operators —, -—, and —-= to subtract an integral
value from a pointer.

Also, you may subtract two pointers. Difference will equal the distance between
the two pointed addresses, in bytes.

For example:

int af 107 ;

int *pil = &a[0], *pi2 = & 4];

i = pi2 - pil; // 1 equals 8

pi2 -= (1 >> 1); // pi2 = pi2 - 4: pi2 now points to a[0]

@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééoﬂ? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Structures

A structure is a derived type usually representing a user-defined collection of
named members (or components). The members can be of any type, either funda-
mental or derived (with some restrictions to be noted later), in any sequence. In
addition, a structure member can be a bit field type not allowed elsewhere.

Unlike arrays, structures are considered single objects. The mikroC structure type
lets you handle complex data structures almost as easily as single variables.

Note: mikroC does not support anonymous structures (ANSI divergence).
Structure Declaration and Initialization

Structures are declared using the keyword struct:

struct tag { member-declarator-1list };

Here, tag is the name of the structure; member-declarator-1list is a list of
structure members, actually a list of variable declarations. Variables of structured
type are declared same as variables of any other type.

The member type cannot be the same as the struct type being currently declared.
However, a member can be a pointer to the structure being declared, as in the fol-
lowing example:

struct mystruct { mystruct s;}; /* illegal! */
struct mystruct { mystruct *ps;}; /* OK */

Also, a structure can contain previously defined structure types when declaring an
instance of a declared structure. Here is an example:

/* Structure defining a dot: */
struct Dot { float x, y;};

/* Structure defining a circle: */
struct Circle {
double r;
struct Dot center;
} ol, o02; /* declare variables ol and o2 of circle type */

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @ ﬂ

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Note that you can omit structure tag, but then you cannot declare additional
objects of this type elsewhere. For more information, see the “Untagged
Structures” below.

Structure is initialized by assigning it a comma-delimited sequence of values with-
in braces, similar to array. Referring to declarations from the previous example:

/* Declare and initialize dots p and q: */
struct Dot p = {1., 1.}, g ={3.7, -0.5};

/* Initialize already declared circles ol and o2: */
ol = {1, {0, O}}; // r is 1, center is at (0, 0)
02 ={4, { 1.2, -3 1}}; // r is 4, center is at (1.2, -3)

Incomplete Declarations

Incomplete declarations are also known as forward declarations. A pointer to a
structure type A can legally appear in the declaration of another structure B before
A has been declared:

struct A; // incomplete
struct B { struct A *pa;};
struct A { struct B *pb;};

The first appearance of A is called incomplete because there is no definition for it
at that point. An incomplete declaration is allowed here, because the definition of
B doesn’t need the size of A.

Untagged Structures and Typedefs

If you omit the structure tag, you get an untagged structure. You can use untagged
structures to declare the identifiers in the comma-delimited st ruct-id-1list to
be of the given structure type (or derived from it), but you cannot declare addition-
al objects of this type elsewhere.

It is possible to create a typedef while declaring a structure, with or without a tag:

typedef struct { ... } Mystruct;
Mystruct s, *ps, arrs[10];

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Structure Assignment

Variables of same structured type may be assigned one to another by means of
simple assignment operator (=). This will copy the entire contents of the variable
to destination, regardless of the inner complexitiy of a given structure.

Note that two variables are of same structured type only if they were both defined
by the same instruction or were defined using the same type identifier. For exam-
ple:

/* a and b are of the same type: */
struct {int ml, m2;} a, b;

/* But c and d are not of the same type although
their structure descriptions are identical: */

struct {int ml, m2;} c;
struct {int ml, m2;} d;

Size of Structure
You can get size of the structure in memory by means of operator sizeof. Size of

the structure does not necessarily need to be equal to the sum of its members’
sizes. It is often greater due to certain limitations of memory storage.

Structures and Functions

A function can return a structure type or a pointer to a structure type:

mystruct funcl(); // funcl() returns a structure
mystruct *func2(); // func2() returns pointer to structure

A structure can be passed as an argument to a function in the following ways:

void funcl (mystruct s); // directly
void func2 (mystruct *sptr); // via pointer

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @@

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Structure Member Access

Structure and union members are accessed using the following two selection oper-
ators:

. (period)
—> (right arrow)

The operator . is called the direct member selector and it is used to directly access
one of the structure’s members. Suppose that the object s is of struct type S. Then
if m is a member identifier of type M declared in s, the expression

s.m // direct access to member m

is of type M, and represents the member object m in s.

The operator —> is called the indirect (or pointer) member selector. Suppose that
ps is a pointer to s. Then if m is a member identifier of type M declared in s, the

expression

ps->m // indirect access to member m;
// identical to (*ps).m

is of type M, and represents the member object m in s. The expression ps—>m is a
convenient shorthand for (*ps) .m.

For example:

struct mystruct {
int i; char str[10] ; double d;

} s, *sptr = &s;
s.i = 3; // assign to the 1 member of mystruct s
sptr => d = 1.23; // assign to the d member of mystruct s

The expression s.m is an lvalue, provided that s is an Ivalue and m is not an array
type. The expression sptr->m is an lvalue unless m is an array type.

@4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mé{«lﬂ? ctdmt«ﬂee... MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Accessing Nested Structures

If structure B contains a field whose type is structure 2, the members of A can be
accessed by two applications of the member selectors:

struct A {
int j; double x;
b
struct B {
int i; struct A a; double d;
} s, *sptr;

//.

s.i = 3; // assign 3 to the 1 member of B
s.a.j = 2; // assign 2 to the j member of A
sptr->d = 1.23; // assign 1.23 to the d member of B

sptr->a.x = 3.14; // assign 3.14 to x member of A

Structure Uniqueness

Each structure declaration introduces a unique structure type, so that in

struct A {
int i,j; double d;
} aa, aaa;

struct B {
int i,j; double d;
} bb;

the objects aa and aaa are both of type struct a, but the objects aa and bb are of
different structure types. Structures can be assigned only if the source and destina-
tion have the same type:

aa = aaa; /* OK: same type, member by member assignment */
aa = bb; /* ILLEGAL: different types */

/* but you can assign member by member: */
aa.i = bb.i;
aa.j bb.7j;
aa.d = bb.d;

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @5

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Union types are derived types sharing many of the syntactic and functional fea-
tures of structure types. The key difference is that a union allows only one of its
members to be “active” at any given time, the most recently changed member.

Note: mikroC does not support anonymous unions (ANSI divergence).
Union Declaration

Unions are declared same as structures, with the keyword union used instead of
struct:

union tag { member-declarator-list };

Unlike structures’ members, the value of only one of union’s members can be
stored at any time. Let’s have a simple example:

union myunion { // union tag is 'myunion'
int i;
double d;
char ch;

} mu, *pm = μ

The identifier mu, of type union myunion, can be used to hold a 2-byte int, a
4-byte double, or a single-byte char, but only one of these at any given time.

Size of Union

The size of a union is the size of its largest member. In our previous example, both
sizeof (union myunion) and sizeof (mu) return 4, but 2 bytes are unused
(padded) when mu holds an int object, and 3 bytes are unused when mu holds a
char.

Union Member Access

Union members can be accessed with the structure member selectors (. and —>),
but care is needed. Check the example on the following page.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééoﬂ? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Referring to declarations from the previous example:

mu.d = 4.016;

Lcd Out Cp(FloatToStr (mu.d)); // OK: displays mu.d = 4.016
Led Out Cp (IntToStr(mu.i)); // peculiar result

pm->i = 3;

Lcd Out Cp(IntToStr(mu.i)); // OK: displays mu.i = 3

The second Lcd Out Cp is legal, since mu. i is an integral type. However, the bit
pattern in mu. i corresponds to parts of the previously assigned double. As such,
it probably does not provide a useful integer interpretation.

When properly converted, a pointer to a union points to each of its members, and
vice versa.

Bit Fields

Bit fields are specified numbers of bits that may or may not have an associated
identifier. Bit fields offer a way of subdividing structures into named parts of user-
defined sizes.

Structures and unions can contain bit fields. Bit fields can be up to 16 bits.

You cannot take the address of a bit field.

Note: If you need to handle specific bits of 8-bit variables (char and unsigned
short) or registers, you don’t need to declare bit fields. Much more elegant solu-
tion is to use mikroC’s intrinsic ability for individual bit access — see Accessing
Individual Bits for more information.

Bit Fields Declaration

Bit fields can be declared only in structures. Declare a structure normally, and
assign individual fields like this (fields need to be unsigned):

struct tag { unsigned bitfield-declarator-list; }

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @7

mikro

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Here, fag is an optional name of the structure; bitfield-declarator-list is a list of bit
fields. Each component identifer requires a colon and its width in bits to be explic-
itly specified. Total width of all components cannot exceed two bytes (16 bits).

As an object, bit fields structure takes two bytes. Individual fields are packed
within two bytes from right to left. In bitfield-declarator-list, you can omit identi-
fier(s) to create artificial “padding”, thus skipping irrelevant bits.

For example, if we need to manipulate only bits 2—4 of a register as one block, we
could create a structure:

struct {
unsigned : 2, // Skip bits 0 and 1, no identifier here
mybits HECH // Relevant bits 2, 3, and 4
// Bits 5, 6, and 7 are implicitly left out
} myreg;

Here is an example:

typedef struct {
prescaler : 2; timeronoff : 1; postscaler : 4;} mybitfield;

which declares structured type mybitfield containing three components:
prescaler (bits 0 and 1), timeronoff (bit 2), and postscaler (bits 3, 4, 5,
and 6).

Bit Fields Access

Bit fields can be accessed in same way as the structure members. Use direct and
indirect member selector (. and ->). For example, we could work with our
previously declared mybitfield like this:

// Declare a bit field TimerControl:
mybitfield TimerControl;

void main () {
TimerControl.prescaler 0;
TimerControl.timeronoff = 1;
TimerControl.postscaler = 3;

T2CON = TimerControl;

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééoﬂ? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

TYPES CONVERSIONS

C is strictly typed language, with each operator, statement and function demanding
appropriately typed operands/arguments. However, we often have to use objects of
“mismatching” types in expressions. In that case, type conversion is needed.
Conversion of object of one type is changing it to the same object of another type
(i.e. applying another type to a given object). C defines a set of standard conver-
sions for built-in types, provided by compiler when necessary.

Conversion is required in following situations:

- if statement requires an expression of particular type (according to language
definition), and we use an expression of different type,

- if operator requires an operand of particular type, and we use an operand of
different type,

- if a function requires a formal parameter of particular type, and we pass it an
object of different type,

- if an expression following the keyword return does not match the declared
function return type,

- if intializing an object (in declaration) with an object of different type.

In these situations, compiler will provide an automatic implicit conversion of
types, without any user interference. Also, user can demand conversion explicitly
by means of typecast operator. For more information, refer to Explicit
Typecasting.

Standard Conversions

Standard conversions are built in C. These conversions are performed automatical-
ly, whenever required in the program. They can be also explicitly required by
means of typecast operator (refer to Explicit Typecasting).

The basic rule of automatic (implicit) conversion is that the operand of simpler
type is converted (promoted) to the type of more complex operand. Then, type of
the result is that of more complex operand.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @@

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

Arithmetic Conversions

When you use an arithmetic expression, such as a+b, where a and b are of differ-
ent arithmetic types, mikroC performs implicit type conversions before the expres-
sion is evaluated. These standard conversions include promotions of “lower” types
to “higher” types in the interests of accuracy and consistency.

Assigning a signed character object (such as a variable) to an integral object
results in automatic sign extension. Objects of type signed char always use
sign extension; objects of type unsigned char always set the high byte to zero
when converted to int.

Converting a longer integral type to a shorter type truncates the higher order bits
and leaves low-order bits unchanged. Converting a shorter integral type to a longer
type either sign-extends or zero-fills the extra bits of the new value, depending on
whether the shorter type is signed or unsigned, respectively.

Note: Conversion of floating point data into integral value (in assignments or via
explicit typecast) produces correct results only if the £1oat value does not exceed
the scope of destination integral type.

First, any small integral types are converted according to the following rules:

1. char converts to int

2. signed char converts to int, with the same value

3. short converts to int, with the same value, sign-extended

4. unsigned short converts to unsigned int, with the same value, zero-filled
5. enum converts to int, with the same value

After this, any two values associated with an operator are either int (including
the long and unsigned modifiers), or they are float (equivalent with double
and long double in mikroC).

1. If either operand is £1oat, the other operand is converted to float

2. Otherwise, if either operand is unsigned long, the other operand is converted
to unsigned long

3. Otherwise, if either operand is 1ong, the other operand is converted to 1ong

4. Otherwise, if either operand is unsigned, the other operand is converted to
unsigned

5. Otherwise, both operands are int

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

The result of the expression is the same type as that of the two operands.

Here are several examples of implicit conversion:

2+3.1 // = 2. + 3.1 = 5.1
5/4*3. // = (5/4)*3. = 1*3. = 1.%3. = 3.0
3.%5/4 // = (3.*%5)/4 = (3.%5.)/4 = 15./4 = 15./4. = 3.75

Pointer Conversions

Pointer types can be converted to other pointer types using the typecasting mecha-
nism:

char *str;

int *ip;
str = (char *)ip;

More generally, the cast (type*) will convert a pointer to type “pointer to type”.

Explicit Types Conversions (Typecasting)

In most situations, compiler will provide an automatic implicit conversion of types
where needed, without any user interference. Also, you can explicitly convert an
operand to another type using the prefix unary typecast operator:

(type) object
For example:

char a, b;

/* Following line will coerce a to unsigned int: */
(unsigned int) a;

/* Following line will coerce a to double,
then coerce b to double automatically,
resulting in double type value: */
(double) a + b; // equivalent to ((double) a) + b;

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ @ﬂ

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

DECLARATIONS

Introduction to Declarations

Declaration introduces one or several names to a program — it informs the compil-
er what the name represents, what is its type, what are allowed operations with it,
etc. This section reviews concepts related to declarations: declarations, definitions,
declaration specifiers, and initialization.

The range of objects that can be declared includes:

- Variables

- Constants

- Functions

- Types

- Structure, union, and enumeration tags
- Structure members

- Union members

- Arrays of other types

- Statement labels

- Preprocessor macros

Declarations and Definitions

Defining declarations, also known as definitions, beside introducing the name of
an object, also establish the creation (where and when) of the object; that is, the
allocation of physical memory and its possible initialization. Referencing declara-
tions, or just declarations, simply make their identifiers and types known to the
compiler.

Here is an overview. Declaration is also a definition, except if:
- it declares a function without specifying its body,
- it has an extern specifier, and has no initializator or body (in case of func.),

- it is a typedef declaration.

There can be many referencing declarations for the same identifier, especially in a
multifile program, but only one defining declaration for that identifier is allowed.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méut? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Let’s have an example:

/* Here 1is a nondefining declaration of function max; */
/* it merely informs compiler that max is a function */
int max();

/* Here 1is a definition of function max: */
int max (int x, int y) {
return (x>=y) ? x : y;

int i; /* Definition of variable 1 */
int i; /* Error: 1 1is already defined! */

Declarations and Declarators

A declaration is a list of names. The names are sometimes referred to as declara-
tors or identifiers. The declaration begins with optional storage class specifiers,
type specifiers, and other modifiers. The identifiers are separated by commas and
the list is terminated by a semicolon.

Declarations of variable identifiers have the following pattern:

storage-class [type-qualifier] type varl [=initl], var2 [=init2],

.7

where varl, var2,... are any sequence of distinct identifiers with optional initial-
izers. Each of the variables is declared to be of type; if omitted, type defaults to
int. Specifier storage-class can take values extern, static, register, or
the default auto. Optional type-qualifier can take values const or
volatile. For more details, refer to Storage Classes and Type Qualifiers.

Here is an example of variable declaration:
/* Create 3 integer variables called x, y, and z and

initialize x and y to the values 1 and 2, respectively: */
int x =1, v = 2, z; // z remains uninitialized

These are all defining declarations; storage is allocated and any optional initializ-
ers are applied.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ @3

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

Linkage

An executable program is usually created by compiling several independent trans-
lation units, then linking the resulting object files with preexisting libraries. The
term translation unit refers to a source code file together with any included files,
but less any source lines omitted by conditional preprocessor directives. A problem
arises when the same identifier is declared in different scopes (for example, in dif-
ferent files), or declared more than once in the same scope.

Linkage is the process that allows each instance of an identifier to be associated
correctly with one particular object or function. All identifiers have one of two
linkage attributes, closely related to their scope: external linkage or internal link-
age. These attributes are determined by the placement and format of your declara-
tions, together with the explicit (or implicit by default) use of the storage class
specifier static or extern.

Each instance of a particular identifier with external linkage represents the same
object or function throughout the entire set of files and libraries making up the
program. Each instance of a particular identifier with internal linkage represents
the same object or function within one file only.

Linkage Rules

Local names have internal linkage; same identifier can be used in different files to
signify different objects. Global names have external linkage; identifier signifies
the same object throughout all program files.

If the same identifier appears with both internal and external linkage within the
same file, the identifier will have internal linkage.

Internal Linkage Rules:

1. names having file scope, explicitly declared as static, have internal linkage,

2. names having file scope, explicitly declared as const and not explicitly,
declared as extern, have internal linkage,

3. typedef names have internal linkage,

4. enumeration constants have internal linkage .

ﬂ @4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

External Linkage Rule:

1. names having file scope, that do not comply to any of previously stated internal
linkage rules, have external linkage.

The storage class specifiers auto and register cannot appear in an external
declaration. For each identifier in a translation unit declared with internal linkage,
no more than one external definition can be given. An external definition is an
external declaration that also defines an object or function; that is, it also allocates
storage. If an identifier declared with external linkage is used in an expression
(other than as part of the operand of sizeof), then exactly one external definition
of that identifier must be somewhere in the entire program.

mikroC allows later declarations of external names, such as arrays, structures, and
unions, to add information to earlier declarations. Here's an example:

int a[]; // No size
struct mystruct; // Tag only, no member declarators
int a[3] ={1, 2, 3}; // Supply size and initialize

struct mystruct {
int i, 3;
b // Add member declarators

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ @5

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Storage Classes

Associating identifiers with objects requires each identifier to have at least two
attributes: storage class and type (sometimes referred to as data type). The mikroC
compiler deduces these attributes from implicit or explicit declarations in the
source code.

Storage class dictates the location (data segment, register, heap, or stack) of the
object and its duration or lifetime (the entire running time of the program, or dur-
ing execution of some blocks of code). Storage class can be established by the
syntax of the declaration, by its placement in the source code, or by both of these
factors:

storage-class type identifier

The storage class specifiers in mikroC are:

auto
register
static
extern

Auto

Use the auto modifer to define a local variable as having a local duration. This is
the default for local variables and is rarely used. You cannot use auto with glob-
als. See also Functions.

Register
By default, mikroC stores variables within internal microcontroller memory. Thus,

modifier register technically has no special meaning. mikroC compiler simply
ignores requests for register allocation.

ﬂ @@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mé{«lﬂ? ctdwk«ﬂée... MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Static

Global name declared with static specifier has internal linkage, meaning that it
is local for a given file. See Linkage for more information.

Local name declared with static specifier has static duration. Use static with
a local variable to preserve the last value between successive calls to that function.
See Duration for more information.

Extern

Name declared with extern specifier has external linkage, unless it has been pre-
viously declared as having internal linkage. Declaration is not a definition if it has
extern specifier and is not initialized. The keyword extern is optional for a
function prototype.

Use the extern modifier to indicate that the actual storage and initial value of a
variable, or body of a function, is defined in a separate source code module.
Functions declared with extern are visible throughout all source files in a pro-
gram, unless you redefine the function as static.

See Linkage for more information.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ @7

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Type Qualifiers

Type qualifiers const and volatile are optional in declarations and do not actu-
ally affect the type of declared object.

Qualifier const

Qualifier const implies that the declared object will not change its value during
runtime. In declarations with const qualifier, you need to initialize all the objects
in the declaration.

Effectively, mikroC treats objects declared with const qualifier same as literals or
preprocessor constants. Compiler will report an error if trying to change an object
declared with const qualifier.

For example:

const double PI = 3.14159;

Qualifier volatile

Qualifier volatile implies that variable may change its value during runtime
indepent from the program. Use the volatile modifier to indicate that a variable
can be changed by a background routine, an interrupt routine, or an I/O port.
Declaring an object to be volatile warns the compiler not to make assumptions
concerning the value of the object while evaluating expressions in which it occurs
because the value could change at any moment.

ﬂ @ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mé{«lﬂ? ctdwk«ﬂée... MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Typedef Specifier

Specifier typedef introduces a synonym for a specified type. You can use type-
def declarations to construct shorter or more meaningful names for types already
defined by the language or for types that you have declared. You cannot use the
typedef specifier inside a function definition.

The specifier typedef stands first in the declaration:
typedef <type-definition> synonym;

The typedef keyword assigns the synonym to the <type-definition>. The
synonym needs to be a valid identifier.

Declaration starting with the typede £ specifier does not introduce an object or
function of a given type, but rather a new name for a given type. That is, the
typedef declaration is identical to “normal” declaration, but instead of objects, it
declares types. It is a common practice to name custom type identifiers with start-
ing capital letter — this is not required by C.

For example:

// Let's declare a synonym for "unsigned long int":
typedef unsigned long int Distance;

// Now, synonym "Distance" can be used as type identifier:
Distance i; // declare variable i of unsigned long int

In typedef declaration, as in any declaration, you can declare several types at once.
For example:
typedef int *Pti, Arrayl 10];

Here, Pti is synonym for type “pointer to int”, and Array is synonym for type
“array of 10 int elements”.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ @@

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

asm Declaration

C allows embedding assembly in the source code by means of asm declaration.
Declarations _asm and __asm are also allowed in mikroC, and have the same
meaning. Note that you cannot use numerals as absolute addresses for SFR or
GPR variables in assembly instructions. You may use symbolic names instead
(listing will display these names as well as addresses).

You can group assembly instructions by the asm keyword (or asm, or asm):

asm {
block of assembly instructions

}

C comments (both single-line and multi-line) are allowed in embedded assembly
code. Assembly-style comments starting with semicolon are not allowed.

If you plan to use a certain C variable in embedded assembly only, be sure to at
least initialize it in C code; otherwise, linker will issue an error. This does not
apply to predefined globals such as PORTB.

For example, the following code will not be compiled, as linker won’t be able to
recognize variable myvar:

unsigned myvar;
void main () {
asm {
MOVLW 10 // just a test
MOVLW test main global myvar 1
}

Adding the following line (or similar) above asm block would let linker know that
variable is used:

nyvar := 0;

Note: mikroC will not check if the banks are set appropriately for your variable.
You need to set the banks manually in assembly code.

ﬂ ﬂ @ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Migration from older versions of mikroC

The syntax that is being used in the asm blocks is somewhat different than it has
been in vesion 2. The differences are:

Variable mangling is altered, and is now more in C-manner. For example, for vari-
able named :

- _myVar, if it is global.
- FARG_+XX, if it is local (this is myVar's actual position in the local function

frame.
- _myVar LO(+XX), if it is a local static variable (+XX to access further individ-

ual bytes).

The only types whose name remains the same in asm as it is in C are constants,
e.g. INTCON, PORTB, WREG, GIE, etc.

Accessing individual bytes is different as well. For example, if you have a global
variable "g_var", that is of type long (i.e. 4 bytes), you are to access it like this:

MOVF g var+0, 0 ;puts least-significant byte of g var in W
register
MOVF g var+l, 0 ;second byte of g var; corresponds to
Hi(g var)
MOVF g var+2, 0 ;Higher (g var)
MOVF g var+3, 0 ;Highest (g var)
etc.

Syntax for retrieving address of an object is different. For objects located in flash

ROM:
MOVLW # g var ;first byte of address
MOVLW @# g var ;second byte of address
MOVLW @@# g var ;third byte of address

and so on.

For objects located in RAM:
MOVLW CONSTI1 ;first byte of address

MOVLW @CONST1 ;second byte of address
and so on.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ ﬂ ﬂ

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

Initialization

At the time of declaration, you can set the initial value of a declared object, i.e.
initialize it. Part of the declaration which specifies the initialization is called the
initializer.

Initializers for globals and static objects must be constants or constant expressions.
The initializer for an automatic object can be any legal expression that evaluates to
an assignment-compatible value for the type of the variable involved.

Scalar types are initialized with a single expression, which can optionally be
enclosed in braces. The initial value of the object is that of the expression; the
same constraints for type and conversions apply as for simple assignments.

For example:

int i = 1;
char *s = "hello";

struct complex ¢ = {0.1, -0.2};

// where 'complex' is a structure (float, float)

For structures or unions with automatic storage duration, the initializer must be
one of the following:

- an initializer list,

- a single expression with compatible union or structure type. In this case, the
initial value of the object is that of the expression.

For more information, refer to Structures and Unions.

Also, you can initialize arrays of character type with a literal string, optionally

enclosed in braces. Each character in the string, including the null terminator, ini-

tializes successive elements in the array. For more information, refer to Arrays.

Automatic Initialization

mikroC does not provide automatic initialization for objects. Uninitialized globals
and objects with static duration will take random values from memory.

ﬂ ﬂ 2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééoﬂ? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

FUNCTIONS

Functions are central to C programming. Functions are usually defined as subpro-
grams which return a value based on a number of input parameters. Return value
of a function can be used in expressions — technically, function call is considered
an operator like any other.

C allows a function to create results other than its return value, referred to as side
effects. Often, function return value is not used at all, depending on the side
effects. These functions are equivalent to procedures of other programming lan-
guages, such as Pascal. C does not distinguish between procedure and function —
functions play both roles.

Each program must have a single external function named main marking the entry
point of the program. Functions are usually declared as prototypes in standard or
user-supplied header files, or within program files. Functions have external linkage
by default and are normally accessible from any file in the program. This can be
restricted by using the static storage class specifier in function declaration (see
Storage Classes and Linkage).

Note: Check the PIC Specifics for more info on functions’ limitations on PIC
micros.

Function Declaration

Functions are declared in your source files or made available by linking precom-
piled libraries. Declaration syntax of a function is:

type function name(parameter-declarator-1ist);

The function name must be a valid identifier. This name is used to call the
function; see Function Calls for more information. The type represents the type
of function result, and can be any standard or user-defined type. For functions that
do not return value, you should use void type. The type can be omitted in global
function declarations, and function will assume int type by default.

Function type can also be a pointer. For example, f1oat* means that the func-
tion result is a pointer to f1loat. Generic pointer, void* is also allowed. Function
cannot return array or another function.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ ﬂ 3

mikro

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

Within parentheses, parameter-declarator-1list is a list of formal arguments
that function takes. These declarators specify the type of each function parameter.
The compiler uses this information to check function calls for validity. If the list is
empty, function does not take any arguments. Also, if the list is void, function
also does not take any arguments; note that this is the only case when void can be
used as an argument’s type.

Unlike with variable declaration, each argument in the list needs its own type
specifier and a possible qualifier const or volatile.

Function Prototypes

A given function can be defined only once in a program, but can be declared sev-
eral times, provided the declarations are compatible. If you write a nondefining
declaration of a function, i.e. without the function body, you do not have to specify
the formal arguments. This kind of declaration, commonly known as the function
prototype, allows better control over argument number and type checking, and
type conversions.

Name of the parameter in function prototype has its scope limited to the prototype.
This allows different parameter names in different declarations of the same func-
tion:

/* Here are two prototypes of the same function: */

int test (const char*) // declares function test
int test (const char*p) // declares the same function test

Function prototypes greatly aid in documenting code. For example, the function
Cf Init takes two parameters: Control Port and Data Port. The question is,
which is which? The function prototype

void Cf Init (char *ctrlport, char *dataport);

makes it clear. If a header file contains function prototypes, you can that file to get
the information you need for writing programs that call those functions. If you
include an identifier in a prototype parameter, it is used only for any later error
messages involving that parameter; it has no other effect.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Function Definition

Function definition consists of its declaration and a function body. The function
body is technically a block — a sequence of local definitions and statements
enclosed within braces { } . All variables declared within function body are local to
the function, i.e. they have function scope.

The function itself can be defined only within the file scope. This means that func-
tion declarations cannot be nested.

To return the function result, use the return statement. Statement return in
functions of void type cannot have a parameter — in fact, you can omit the
return statement altogether if it is the last statement in the function body.

Here is a sample function definition:

/* function max returns greater one of its 2 arguments: */

int max (int x, int y) {
return (x>=y) ? x : y;

}

Here is a sample function which depends on side effects rather than return value:

/* function converts Descartes coordinates (x,y)
to polar coordinates (r,fi): */

#include <math.h>

void polar (double x, double y, double *r, double *fi) {
*r = sqrt(x * x + y * y);
*fi = (x == 0 && y == 0) 2?2 0 : atan2(y, x);
return; /* this line can be omitted */

}

Function Reentrancy

Limited reentrancy for functions is allowed. The functions that don't have their
own function frame (no arguments and local variables) can be called both from the
interrupt and the "main" thread. Functions that have input arguments and/or local
variables can be called only from one of the before mentioned program threads.
Check Indirect Function Calls.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ ﬂ 5

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

Function Calls

A function is called with actual arguments placed in the same sequence as their
matching formal parameters. Use a function-call operator ():

function name(expression 1, ... , expression n)

Each expression in the function call is an actual argument. Number and types of
actual arguments should match those of formal function parameters. If types dis-
agree, implicit type conversions rules apply. Actual arguments can be of any com-
plexity, but you should not depend on their order of evaluation, because it is not
specified.

Upon function call, all formal parameters are created as local objects initialized by
values of actual arguments. Upon return from a function, temporary object is cre-
ated in the place of the call, and it is initialized by the expression of return state-
ment. This means that function call as an operand in complex expression is treated
as the function result.

If the function is without result (type void) or you don’t need the result, you can
write the function call as a self-contained expression.

In C, scalar parameters are always passed to function by value. A function can
modify the values of its formal parameters, but this has no effect on the actual
arguments in the calling routine. You can pass scalar object by the address by
declaring a formal parameter to be a pointer. Then, use the indirection operator *
to access the pointed object.

Argument Conversions

When a function prototype has not been previously declared, mikroC converts
integral arguments to a function call according to the integral widening (expan-
sion) rules described in Standard Conversions. When a function prototype is in
scope, mikroC converts the given argument to the type of the declared parameter
as if by assignment.

ﬂ ﬂ @ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééoﬂ? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

If a prototype is present, the number of arguments must match. The types need to
be compatible only to the extent that an assignment can legally convert them. You
can always use an explicit cast to convert an argument to a type that is acceptable
to a function prototype.

Note: If your function prototype does not match the actual function definition,
mikroC will detect this if and only if that definition is in the same compilation unit
as the prototype. If you create a library of routines with a corresponding header
file of prototypes, consider including that header file when you compile the
library, so that any discrepancies between the prototypes and the actual definitions
will be caught.

The compiler is also able to force arguments to the proper type. Suppose you have
the following code:

int limit = 32;
char ch = 'A';
long res;

extern long func(long parl, long par2); // prototype

main () {
Y

res = func(limit, ch); // function call

Since it has the function prototype for func, this program converts 1imit and ch
to long, using the standard rules of assignment, before it places them on the stack
for the call to func.

Without the function prototype, 1imit and ch would have been placed on the
stack as an integer and a character, respectively; in that case, the stack passed to
func would not match in size or content what func was expecting, leading to
problems.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ ﬂ 7

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Ellipsis ('...") Operator

An ellipsis ('...") consists of three successive periods with no whitespace interven-
ing. You can use an ellipsis in the formal argument lists of function prototypes to
indicate a variable number of arguments, or arguments with varying types. For
example:

void func (int n, char ch, ...);

This declaration indicates that func will be defined in such a way that calls must
have at least two arguments, an int and a char, but can also have any number of
additional arguments.

Example:

#include <stdarg.h>

int addvararg(char al,...){
va list ap;

char temp;

va_ start (ap,al);

while(temp = va arg(ap,char))
al += temp;

return al;

}

int res;
void main () {

res = addvararg(l,2,3,4,5,0);

res = addvararg(l,2,3,4,5,6,7,8,9,10,0);

Y/~

ﬂ ﬂ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

OPERATORS

Operators are tokens that trigger some computation when applied to variables and
other objects in an expression.

mikroC recognizes following operators:

- Arithmetic Operators
- Assignment Operators
- Bitwise Operators

- Logical Operators

- Reference/Indirect Operators (see Pointer Arithmetic)

- Relational Operators

- Structure Member Selectors (see Structure Member Access)
- Comma Operator , (see Comma Expressions)

- Conditional Operator ?

- Array subscript operator [] (see Arrays)
- Function call operator () (see Function Calls)

- sizeof Operator

- Preprocessor Operators # and ## (see Preprocessor Operators)

Operators Precedence and Associativity

There are 15 precedence categories, some of which contain only one operator.
Operators in the same category have equal precedence with each other.

Table on the following page sums all mikroC operators.

Where duplicates of operators appear in the table, the first occurrence is unary, the
second binary. Each category has an associativity rule: left-to-right or right-to-left.
In the absence of parentheses, these rules resolve the grouping of expressions with
operators of equal precedence.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ ﬂ @

MIKROD - C GOMPILER FOR MIGROCHIP PIC MICROCONTROLLERS e W o simple...
Precedence | Operands | Operators Associativity
15 2 0 [] . - left-to-right
14 | ; N(typ;* teeor | righttolef
13 2 * / % left-to-right
12 2 + - left-to-right
11 2 << >> left-to-right
10 2 < <= > >= left-to-right
9 2 == I= left-to-right
8 2 & left-to-right
7 2 ~ left-to-right
6 2 | left-to-right
5 2 && left-to-right
4 2 Il left-to-right
3 3 2 left-to-right
2 2 oD DTl T etk
1 2 , left-to-right

ﬂ 2@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méé&? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Arithmetic Operators
Arithmetic operators are used to perform mathematical computations. They have
numerical operands and return numerical results. Type char technically represents

small integers, so char variables can used as operands in arithmetic operations.

All of arithmetic operators associate from left to right.

Operator Operation Precedence
+ addition 12
- subtraction 12
* multiplication 13
/ division 13

returns the remainder of integer division (can-

° not be used with floating points) 13
+ (unary) unary plus does not affect the operand 14
- (unary) unary minus changes the sign of operand 14
increment adds one to the value of the
++ 14
operand
L decrement subtracts one from the value of the 14

operand

Note: Operator * is context sensitive and can also represent the pointer reference
operator. See Pointers for more information.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ 2 ﬂ

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Binary Arithmetic Operators

Division of two integers returns an integer, while remainder is simply truncated:

/* for example: */

7/ 4; // equals 1
7% 3/ 4; // equals 5
/* but: */

7. * 3./ 4.; // equals 5.25 as we are working with floats

Remainder operand $ works only with integers; sign of result is equal to the sign
of first operand:

/* for example: */

9 % 3; // equals 0
7% 3; // equals 1
-7 % 3; // equals -1

We can use arithmetic operators for manipulating characters:

'A' + 32; // equals 'a' (ASCII only)
'G' - 'A' + 'a'; // equals 'g' (both ASCII and EBCDIC)

Unary Arithmetic Operators

Unary operators ++ and -- are the only operators in C which can be either prefix
(e.g. ++k, ——k) or postfix (e.g. k++, k--).

When used as prefix, operators ++ and -- (preincrement and predecrement) add or
subtract one from the value of operand before the evaluation. When used as suffix,
operators ++ and -- add or subtract one from the value of operand after the evalu-
ation.

For example:

int j = 5; j = ++k;
/* k =k + 1, j = k, which gives us j = 6, k = 6 */
int 7 = 5; J = k++;
/* j =k, k = k + 1, which gives us j = 5, k = 6 */

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Relational Operators

Use relational operators to test equality or inequality of expressions. If the expres-
sion evaluates to true, it returns 1; otherwise it returns 0.

All relational operators associate from left to right.

Relational Operators Overview

Operator Operation Precedence
== equal 9
1= not equal 9
> greater than 10
< less than 10
>= greater than or equal 10
<= less than or equal 10

Relational Operators in Expressions

Precedence of arithmetic and relational operators was designated in such a way to
allow complex expressions without parentheses to have expected meaning:

a+ 5> c¢c-1.0/ e // i.e. (a + 5) >= (¢ - (1.0 / e))

Always bear in mind that relational operators return either 0 or 1. Consider the fol-
lowing examples:

8§ == 13 > 5 // returns 0: 8==(13>5), 8==1, 0
14 > 5 < 3 // returns 1: (14>5)<3, 1<3, 1
a< b< b // returns 1: (a<b)<5, (0 or 1)<5, 1

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ 23

MIKRODC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Bitwise Operators

Use the bitwise operators to modify the individual bits of numerical operands.

Bitwise operators associate from left to right. The only exception is the bitwise
complement operator ~ which associates from right to left.

Bitwise Operators Overview

Operator Operation Precedence
. bitwise AND; returns 1 if both bits are 1, oth- 9
erwise returns 0
| bitwise (inclusive) OR; returns 1 if either or 9
both bits are 1, otherwise returns 0
R bitwise exclusive OR (XOR); returns 1 if the 10
bits are complementary, otherwise 0
~ bitwise complement (unary); inverts each bit 10
bitwise shift left; moves the bits to the left,
>> 10
see below
bitwise shift right; moves the bits to the right,
<< 10
see below

Note: Operator & can also be the pointer reference operator. Refer to Pointers for

more information.

Bitwise operators &, |, and ~ perform logical operations on appropriate pairs of
bits of their operands. For example:

0x1234 & 0x5678;

/* because

/* equals 0x1230 */

0x1234 : 0001 0010 0011 0100
0x5678 : 0101 0110 0111 1000

& : 0001 0010 0011 0000

that 1is,

0x1230 */

MIKROELEKTRONIKA: DEVELOPMENT TOOLS -

BoOooks - COMPILERS

MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

/* Similarly: */

0x1234 | 0x5678; /* equals 0x567C */
0x1234 ~ 0x5678; /* equals 0x444C */
~ 0x1234; /* equals 0OxEDCB */

Bitwise Shift Operators

Binary operators << and >> move the bits of the left operand for a number of posi-
tions specified by the right operand, to the left or right, respectively. Right operand
has to be positive.

With shift left (<<), left most bits are discarded, and “new” bits on the right are
assigned zeroes. Thus, shifting unsigned operand to left by n positions is equiva-
lent to multiplying it by 2n if all the discarded bits are zero. This is also true for
signed operands if all the discarded bits are equal to sign bit.

000001 << 5; /* equals 000040 */
0x3801 << 4; /* equals 0x8010, overflow! */

With shift right (>>), right most bits are discarded, and the “freed” bits on the left
are assigned zeroes (in case of unsigned operand) or the value of the sign bit (in
case of signed operand). Shifting operand to right by n positions is equivalent to
dividing it by 2n.

0xFF56 >> 4; /* equals OxFFF5 */
0xFF56u >> 4; /* equals 0xOFF5 */

Bitwise vs. Logical

Be aware of the principle difference between how bitwise and logical operators
work. For example:

0222222 & 0555555; /* equals 000000 */
0222222 && 0555555; /* equals 1 */
~ 0x1234; /* equals 0OxEDCB */
! 0x1234; /* equals 0 */

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ 25

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Logical Operators
Operands of logical operations are considered true or false, that is non-zero or
zero. Logical operators always return 1 or 0. Operands in a logical expression

must be of scalar type.

Logical operators &« & and | | associate from left to right. Logical negation operator
!"associates from right to left.

Logical Operators Overview

Operator Operation Precedence
&& logical AND 5
[logical OR 4
! logical negation 14

Precedence of logical, relational, and arithmetic operators was chosen in such a
way to allow complex expressions without parentheses to have expected meaning:

c && c <= '9'; // reads as: (c>='0") && (c<='9")
a+ 1 =D || ' £f(x;) // reads as: ((a+l)== b) || (! (f(x)))

Logical AND (&&) returns 1 only if both expressions evaluate to be nonzero, oth-
erwise returns 0. If the first expression evaluates to false, the second expression is
not evaluated. For example:

a>Db && c < d; // reads as: (a>b) && (c<d)
// 1if (a>b) is false (0), (c<d) will not be evaluated

Logical OR (| |) returns 1 if either of the expressions evaluate to be nonzero, oth-
erwise returns 0. If the first expression evaluates to true, the second expression is
not evaluated. For example:

a && b || ¢ && d; // reads as: (a && b) || (c && d)
// 1if (a&&b) is true (1), (c&&d) will not be evaluated

ﬂ 2@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méut? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Logical Expressions and Side Effects

General rule with complex logical expressions is that the evaluation of consecutive
logical operands stops the very moment the final result is known. For example, if
we have an expression:

a && b && c

where a is false (0), then operands b and c will not be evaluated. This is very
important if b and c are expressions, as their possible side effects will not take
place!

Logical vs. Bitwise

Be aware of the principle difference between how bitwise and logical operators
work. For example:

0222222 & 0555555 /* equals 000000 */
0222222 && 0555555 /* equals 1 */
~ 0x1234 /* equals 0OxEDCB */
! 0x1234 /* equals 0 */

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ 27

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Conditional Operator ? :

The conditional operator ? : is the only ternary operator in C. Syntax of the con-
ditional operator is:

expressionl ? expressionZ : expression3

Expressionl evaluates first. If its value is true, then expression2 evaluates
and expression3is ignored. If expressionl evaluates to false, then expres-
sion3 evaluates and expression2 is ignored. The result will be the value of
either expression2 or expression3 depending upon which evaluates. The fact
that only one of these two expressions evaluates is very important if you expect
them to produce side effects!

Conditional operator associates from right to left.

Here are a couple of practical examples:

/* Find max(a, b): */
max = (a > b) ? a : Db;

/* Convert small letter to capital: */
/* (no parentheses are actually necessary) */
c = (¢ >= 'a' && ¢c <= "z") ? (c - 32) : c;

Conditional Operator Rules

Expressionl must be a scalar expression; expression2 and expression3
must obey one of the following rules:

1. Both of arithmetic type; expression2 and expression3 are subject to the
usual arithmetic conversions, which determines the resulting type.

2. Both of compatible struct or union types. The resulting type is the structure or
union type of expression2 and expression3.

3. Both of void type. The resulting type is void.

ﬂ 2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méé&? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

4. Both of type pointer to qualified or unqualified versions of compatible types.
The resulting type is a pointer to a type qualified with all the type qualifiers of
the types pointed to by both operands.

5. One operand is a pointer, and the other is a null pointer constant. The resulting
type is a pointer to a type qualified with all the type qualifiers of the types
pointed to by both operands.

6. One operand is a pointer to an object or incomplete type, and the other is a

pointer to a qualified or unqualified version of void. The resulting type is that
of the non-pointer-to-void operand.

Assignment Operators

Unlike many other programming languages, C treats value assignment as an oper-
ation (represented by an operator) rather than instruction.

Simple Assignment Operator

For a common value assignment, we use a simple assignment operator (=) :
expressionl = expressionZ?

Expressionl is an object (memory location) to which we assign value of
expression2. Operand expressionl has to be a lvalue, and expression2 can
be any expression. The assignment expression itself is not an Ivalue.

If expressionl and expression?2 are of different types, result of the expres-
sion2 will be converted to the type of expressionl, if necessary. Refer to Type
Conversions for more information.

Compound Assignment Operators

C allows more comlex assignments by means of compound assignment operators.
Syntax of compound assignment operators is:

expressionl op= expressionZ?

where op can be one of binary operators +, -, *, /, %, &, |, *, <<, or >>.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ 2@

mikro

MIKROE - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS __ __________ »2 _E crg _éf_;__ e
Thus, we have 10 different compound assignment operators: +=, -=, *=, /=,
%=, &=, |=, ~=, <<=, and >>=. All of these associate from right to left. Spaces

separating compound operators (e.g. + =) will generate error.
Compound assignment has the same effect as

expressionl = expressionl op expressionZ2

except the Ivalue expressionl is evaluated only once. For example,
expressionl += expression2

is the same as

expressionl = expressionl + expression2

Assignment Rules

For both simple and compound assignment, the operands expressionl and
expression2 must obey one of the following rules:

1. expressionl is a qualified or unqualified arithmetic type and expression2
is an arithmetic type.

2. expressionl has a qualified or unqualified version of a structure or union
type compatible with the type of expression2.

3. expressionl and expressionZ2 are pointers to qualified or unqualified
versions of compatible types, and the type pointed to by the left has all the
qualifiers of the type pointed to by the right.

4. Either expressionl or expressionZ2 is a pointer to an object or incomplete
type and the other is a pointer to a qualified or unqualified version of void.
The type pointed to by the left has all the qualifiers of the type pointed to by the
right.

5. expressionl is a pointer and expressionZ is a null pointer constant.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Sizeof Operator

Prefix unary operator sizeof returns an integer constant that gives the size in
bytes of how much memory space is used by its operand (determined by its type,
with some exceptions).

Operator sizeof can take either a type identifier or an unary expression as an
operand. You cannot use sizeof with expressions of function type, incomplete
types, parenthesized names of such types, or with an lvalue that designates a bit
field object.

Sizeof Applied to Expression

If applied to expression, size of the operand is determined without evaluating the

expression (and therefore without side effects). Result of the operation will be the
size of the type of the expression’s result.

Sizeof Applied to Type

If applied to a type identifier, sizeof returns the size of the specified type. Unit

for type size is the sizeof (char) which is equivalent to one byte. Operation
sizeof (char) gives the result 1, whether the char is signed or unsigned.

sizeof (char) /* returns 1 */
sizeof (int) /* returns 2 */
sizeof (unsigned long) /* returns 4 */

When the operand is a non-parameter of array type, the result is the total number
of bytes in the array (in other words, an array name is not converted to a pointer

type):

int i, j, al 10];

/] ..
J = sizeof (af 1]); /* j = sizeof(int) = 2 */
i = sizeof(a); /* 1 = 10*sizeof(int) = 20 */

If the operand is a parameter declared as array type or function type, sizeof
gives the size of the pointer. When applied to structures and unions, sizeof gives
the total number of bytes, including any padding. Operator sizeof cannot be
applied to a function.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ 3@

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

EXPRESSIONS

An expression is a sequence of operators, operands, and punctuators that specifies
a computation. Formally, expressions are defined recursively: subexpressions can
be nested without formal limit. However, the compiler will report an out-of-mem-
ory error if it can’t compile an expression that is too complex.

In ANSI C, the primary expressions are: constant (also referred to as literal), iden-
tifier, and (expression), defined recursively.

Expressions are evaluated according to certain conversion, grouping, associativity,
and precedence rules that depend on the operators used, the presence of parenthe-
ses, and the data types of the operands. The precedence and associativity of the
operators are summarized in Operator Precedence and Associativity. The way
operands and subexpressions are grouped does not necessarily specify the actual
order in which they are evaluated by mikroC.

Expressions can produce an lvalue, an rvalue, or no value. Expressions might
cause side effects whether they produce a value or not.

Comma Expressions

One of the specifics of C is that it allows you to use comma as a sequence opera-
tor to form the so-called comma expressions or sequences. Comma expression is a
comma-delimited list of expressions — it is formally treated as a single expression
so it can be used in places where an expression is expected. The following
sequence:

expression 1, expression 2;
results in the left-to-right evaluation of each expression, with the value and type of

expression 2 giving the result of the whole expression. Result of expres-
sion 1 is discarded.

ﬂ @2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méut? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Binary operator comma (,) has the lowest precedence and associates from left to
right, so thata, b, cissameas (a, b), c. This allows us to write sequences
with any number of expressions:

expression 1, expression 2, ... expression n;

this results in the left-to-right evaluation of each expression, with the value and
type of expression n giving the result of the whole expression. Results of other
expressions are discarded, but their (possible) side-effect do occur.

For example:

result = (a = 5, b /= 2, c++);
/* returns preincremented value of variable c, but also
intializes a, divides b by 2, and increments c */
result = (x = 10, y = x + 3, x-——, z -= x * 3 - —--y);
/* returns computed value of variable z,
and also computes x and y */

Note
Do not confuse comma operator (sequence operator) with the comma punctuator
which separates elements in a function argument list and initializator lists. Mixing

the two uses of comma is legal, but you must use parentheses to distinguish them.

To avoid ambiguity with the commas in function argument and initializer lists, use
parentheses. For example,

func(i, (3 =1, J + 4), k);

calls function func with three arguments (i, 5, k), not four.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ 33

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

STATEMENTS

Statements specify the flow of control as a program executes. In the absence of
specific jump and selection statements, statements are executed sequentially in the
order of appearance in the source code.

Statements can be roughly divided into:

- Labeled Statements

- Expression Statements

- Selection Statements

- Iteration Statements (Loops)

- Jump Statements

- Compound Statements (Blocks)

Labeled Statements

Every statement in program can be labeled. Label is an identifier added before the
statement like this:

label identifier : statement;
There is no special declaration of a label — it just “tags” the statement.
Label identifier has a function scope and label cannot be redefined within

the same function.

Labels have their own namespace: label identifier can match any other identifier in
the program.

A statement can be labeled for two reasons:
1. The label identifier serves as a target for the unconditional goto statement,

2. The label identifier serves as a target for the switch statement. For this
purpose, only case and default labeled statements are used:

case constant-expression : statement
default : statement

ﬂ @4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Expression Statements
Any expression followed by a semicolon forms an expression statement:
expression;

mikroC executes an expression statement by evaluating the expression. All side
effects from this evaluation are completed before the next statement is executed.
Most expression statements are assignment statements or function calls.

The null statement is a special case, consisting of a single semicolon (;). The null
statement does nothing, and is therefore useful in situations where the mikroC syn-
tax expects a statement but your program does not need one. For example, null
statement is commonly used in “empty” loops:

for (; *gt+ = *p++ ;)
/* body of this loop is a null statement */

Selection Statements

Selection or flow-control statements select from alternative courses of action by
testing certain values. There are two types of selection statements in C: if
and switch.

If Statement

Use the if statement to implement a conditional statement. Syntax of the if
statement is:

if (expression) statementl [else statementZ]

When expression evaluates to true, statementl executes. If expression is
false, statement2 executes. The expression must evaluate to an integral
value; otherwise, the condition is ill-formed. Parentheses around the expression
are mandatory.

The else keyword is optional, but no statements can come between the i f and
the else.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ 35

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Nested if statements

Nested i f statements require additional attention. General rule is that the nested
conditionals are parsed starting from the innermost conditional, with each else
bound to the nearest available i f on its left:

if (expressionl) statementl
else if (expression?2)
if (expression3) statement2
else statement3 /* this belongs to: if (expression3) */

else statement4 /* this belongs to: if (expression2) */

Note: The #if and #else preprocessor statements (directives) look similar to the
if and else statements, but have very different effects. They control which
source file lines are compiled and which are ignored. See Preprocessor for more
information.

Switch Statement

Use the switch statement to pass control to a specific program branch, based on a
certain condition. Syntax of switch statement is:

switch (expression) {
case constant-expression 1 : statement 1;

case constant-expression n : statement n;
[default : statement;]

First, the expression (condition) is evaluated. The switch statement then
compares it to all the available constant-expressions following the keyword
case. If the match is found, switch passes control to that matching case, at
which point the statement following the match evaluates. Note that
constant-expressions must evaluate to integer. There cannot be two same
constant-expressions evaluating to same value.

Parantheses around expression are mandatory.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méut? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Upon finding a match, program flow continues normally: following instructions
will be executed in natural order regardless of the possible case label. If no case
satisfies the condition, the default case evaluates (if the label default is speci-
fied).

For example, if variable i has value between 1 and 3, following switch would
always return it as 4:

switch (i) {
case 1: i++;
case 2: i++;
case 3: i++;

To avoid evaluating any other cases and relinquish control from the switch, ter-
minate each case with break.

Conditional switch statements can be nested — labels case and default are
then assigned to the innermost enclosing switch statement.

Here is a simple example with switch. Let’s assume we have a variable with only
3 different states (0, 1, or 2) and a corresponding function (event) for each of these
states. This is how we could switch the code to the appopriate routine:

switch (state) {
case 0: Lo(); Dbreak;
case 1: Mid(); break;

case 2: Hi(); break;
default: Message ("Invalid state!");

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ 37

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Iteration Statements

Iteration statements let you loop a set of statements. There are three forms of itera-
tion statements in C: while, do, and for.

While Statement

Use the while keyword to conditionally iterate a statement. Syntax of while
statement is:

while (expression) statement

The statement executes repeatedly until the value of expression is false. The test
takes place before statement executes. Thus, if expression evaluates to false
on the first pass, the loop does not execute.

Parentheses around expression are mandatory.

Here is an example of calculating scalar product of two vectors, using the while
statement:

int s = 0, i = 0;
while (i < n) {
s += a[1] * bl i];
i++;
}
Note that body of a loop can be a null statement. For example:

while (*g++ = *p++);

ﬂ @ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Do Statement

The do statement executes until the condition becomes false. Syntax of do state-
ment is:

do statement while (expression);

The statement is executed repeatedly as long as the value of expression
remains non-zero. The expression is evaluated after each iteration, so the loop
will execute statement at least once.

Parentheses around expression are mandatory.

Note that do is the only control structure in C which explicitly ends with semi-
colon (;). Other control structures end with statement which means that they

implicitly include a semicolon or a closing brace.

Here is an example of calculating scalar product of two vectors, using the do
statement:

For Statement
The for statement implements an iterative loop. Syntax of for statement is:
for ([init-exp]; [condition-exp] ; [increment-exp]) statement

Before the first iteration of the loop, expression init-exp sets the starting vari-
ables for the loop. You cannot pass declarations in init-exp.

Expression condition-exp is checked before the first entry into the block;
statement is executed repeatedly until the value of condition-exp is false.
After each iteration of the loop, i ncrement-exp increments a loop counter.
Consequently, i++ is functionally the same as ++i.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ 3@

mikro

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

All the expressions are optional. If condition-exp is left out, it is assumed to be
always true. Thus, “empty” for statement is commonly used to create an endless
loop in C:

for (; ;) {...

The only way to break out of this loop is by means of break statement.

Here is an example of calculating scalar product of two vectors, using the for
statement:

for (s = 0, 1 = 0; i < n; 1i++) s += a[i] * bl 1] :
You can also do it like this:

/* valid, but ugly */
for (s = 0, i = 0; i < n; s += a[i] * D[i], i++);

but this is considered a bad programming style. Although legal, calculating the
sum should not be a part of the incrementing expression, because it is not in the
service of loop routine. Note that we used a null statement (;) for a loop body.

ﬂ 4@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mé{«”? ctawu«ﬂée... MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Jump Statements

A jump statement, when executed, transfers control unconditionally. There are four
such statements in mikroC: break, continue, goto, and return

Break Statement
Sometimes, you might need to stop the loop from within its body. Use the break
statement within loops to pass control to the first statement following the inner-

most switch, for, while, or do block.

Break is commonly used in switch statements to stop its execution upon the first
positive match. For example:

switch (state) {
case 0: Lo(); break;
case 1: Mid(); break;

case 2: Hi(); break;
default: Message ("Invalid state!");

Continue Statement

You can use the continue statement within loops (while, do, for) to “skip the
cycle”. It passes control to the end of the innermost enclosing end brace belonging
to a looping construct. At that point the loop continuation condition is re-evaluat-
ed. This means that continue demands the next iteration if loop continuation con-
dition is true.

Goto Statement

Use the goto statement to unconditionally jump to a local label — for more infor-
mation on labels, refer to Labeled Statements. Syntax of goto statement is:

goto label identifier;

This will transfer control to the location of a local label specified by

label identifier.The label identifier hasto be a name of the label
within the same function in which the goto statement is. The goto line can come
before or after the label.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ 4ﬂ

mikro

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

You can use goto to break out from any level of nested control structures. But,
goto cannot be used to jump into block while skipping that block’s initializations
— for example, jumping into loop’s body, etc.

Use of goto statement is generally discouraged as practically every algorithm can
be realized without it, resulting in legible structured programs. One possible appli-
cation of goto statement is breaking out from deeply nested control structures:

for (...) {
for (...) {

if (disaster) goto Error;

Error: /* error handling code */
Return Statement

Use the return statement to exit from the current function back to the calling
routine, optionally returning a value. Syntax is:

return [expression] ;

This will evaluate the expression and return the result. Returned value will be
automatically converted to the expected function type, if needed. The expres-
sion is optional; if omitted, function will return a random value from memory.

Note: Statement return in functions of void type cannot have an expression —
in fact, you can omit the return statement altogether if it is the last statement in
the function body.

ﬂ 42 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Compound Statements (Blocks)

A compound statement, or block, is a list (possibly empty) of statements enclosed
in matching braces { } . Syntactically, a block can be considered to be a single
statement, but it also plays a role in the scoping of identifiers. An identifier
declared within a block has a scope starting at the point of declaration and ending
at the closing brace. Blocks can be nested to any depth up to the limits of memory.

For example, for loop expects one statement in its body, so we can pass it a com-
pound statement:

for (i = 0; i < n; i++) {
int temp = a[i] ;
a[i] = bl i];
bl i] = temp;

}

Note that, unlike other statements, compound statements do not end with semi-
colon (;), i.e. there is never a semicolon following the closing brace.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ 43

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

PREPROCESSOR

Preprocessor is an integrated text processor which prepares the source code for
compiling. Preprocessor allows:

- inserting text from a specifed file to a certain point in code,
- replacing specific lexical symbols with other symbols,
- conditional compiling which conditionally includes or omits parts of code.

Note that preprocessor analyzes text at token level, not at individual character
level. Preprocessor is controled by means of preprocessor directives and pre-
processor operators.

Preprocessor Directives

Any line in source code with a leading # is taken as a preprocessing directive (or
control line), unless the # is within a string literal, in a character constant, or
embedded in a comment. The initial # can be preceded or followed by whitespace
(excluding new lines).

The null directive consists of a line containing the single character #. This line is
always ignored.

Preprocessor directives are usually placed at the beginning of the source code, but
they can legally appear at any point in a program. The mikroC preprocessor
detects preprocessor directives and parses the tokens embedded in them. Directive
is in effect from its declaration to the end of the program file.

mikroC supports standard preprocessor directives:

(null directive) #if
#define #ifndef
#elif #ifndef
#else #include
#endif #line
#error #undef

Note: #pragma directive is under construction.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Line Continuation with Backslash

If you need to break directive into multiple lines, you can do it by ending the line
with a backslash (\):

#define MACRO This directive continues to \
the following line.

Macros

Macros provide a mechanism for token replacement, prior to compilation, with or
without a set of formal, function-like parameters.

Defining Macros and Macro Expansions
The #define directive defines a macro:
#define macro identifier <token sequence>

Each occurrence of macro identifier in the source code following this control
line will be replaced in the original position with the possibly empty

token sequence (there are some exceptions, which are noted later). Such
replacements are known as macro expansions. The token sequence is some-
times called body of the macro. An empty token sequence results in the removal of
each affected macro identifier from the source code.

No semicolon (;) is needed to terminate a preprocessor directive. Any character
found in the token sequence, including semicolons, will appear in the macro
expansion. The token sequence terminates at the first non-backslashed new
line encountered. Any sequence of whitespace, including comments in the token
sequence, is replaced with a single-space character.

After each individual macro expansion, a further scan is made of the newly
expanded text. This allows for the possibility of nested macros: The expanded text
can contain macro identifiers that are subject to replacement. However, if the
macro expands into what looks like a preprocessing directive, such a directive will
not be recognized by the preprocessor. Any occurrences of the macro identifier
found within literal strings, character constants, or comments in the source code
are not expanded

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ 45

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

A macro won’t be expanded during its own expansion (so #define MACRO
MACRO won’t expand indefinitely).

Let’s have an example:

/* Here are some simple macros: */
#define ERR MSG "Out of range!"
#define EVERLOOP for(; ;)

/* which we could use like this: */

main () {
EVERLOOP {

if (error) {Lcd Out Cp(ERR MSG); break;}

Attempting to redefine an already defined macro identifier will result in a warning
unless the new definition is exactly the same token-by-token definition as the
existing one. The preferred strategy where definitions might exist in other header
files is as follows:

#ifndef BLOCK_SIZE

#define BLOCK SIZE 512
#endif

The middle line is bypassed if BLOCK SIZE is currently defined; if BLOCK SIZE
is not currently defined, the middle line is invoked to define it.

ﬂ 4@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méé&? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Macros with Parameters
The following syntax is used to define a macro with parameters:

#define macro identifier(<arg list>) token sequence

Note there can be no whitespace between the macro identifier and the “(”.
The optional arg 1ist is a sequence of identifiers separated by commas, not
unlike the argument list of a C function. Each comma-delimited identifier plays
the role of a formal argument or placeholder.

Such macros are called by writing
macro_identifier(<actual arg list>)

in the subsequent source code. The syntax is identical to that of a function call;
indeed, many standard library C “functions” are implemented as macros.
However, there are some important semantic differences.

The optional actual arg 1ist must contain the same number of comma-delim-
ited token sequences, known as actual arguments, as found in the formal

arg list of the #define line — there must be an actual argument for each for-
mal argument. An error will be reported if the number of arguments in the two
lists is different.

A macro call results in two sets of replacements. First, the macro identifier and the
parenthesis-enclosed arguments are replaced by the token sequence. Next, any for-
mal arguments occurring in the token sequence are replaced by the corresponding
real arguments appearing in the actual arg 1list.As with simple macro defini-
tions, rescanning occurs to detect any embedded macro identifiers eligible for
expansion.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ 47

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Here is a simple example:

// A simple macro which returns greater of its 2 arguments:
#define MAX (A, B) ((A) > (B)) 2 (A) : (B)

// Let's call it:
x = MAX(a + b, c + d);

/* Preprocessor will transform the previous line into:
x = ((a + b) > (¢c +d)) ? (a + b) : (c +d) */

It is highly recommended to put parentheses around each of the arguments in
macro body — this will avoid possible problems with operator precedence.

Undefining Macros

You can undefine a macro using the #undef directive.

#undef macro identifier

Directive #undef detaches any previous token sequence from the macro iden-
tifier; the macro definition has been forgotten, and the macro identifieris
undefined. No macro expansion occurs within #undef lines.

The state of being defined or undefined is an important property of an identifier,
regardless of the actual definition. The #ifdef and #ifndef conditional direc-
tives, used to test whether any identifier is currently defined or not, offer a flexible

mechanism for controlling many aspects of a compilation.

After a macro identifier has been undefined, it can be redefined with #define,
using the same or a different token sequence.

ﬂ 4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

File Inclusion

The preprocessor directive #include pulls in header files (extension .h) into the
source code. Do not rely on preprocessor to include source files (extension .c) —
see Projects for more information.

The syntax of #include directive has two formats:

#include <header name>
#include "header name"

The preprocessor removes the #include line and replaces it with the entire text
of the header file at that point in the source code. The placement of the #include
can therefore influence the scope and duration of any identifiers in the included
file.

The difference between the two formats lies in the searching algorithm employed
in trying to locate the include file.

If #include directive was used with the <header name> version, the search is
made successively in each of the following locations, in this particular order:

1. mikroC installation folder > “include” folder,
2. your custom search paths.

The "header name" version specifies a user-supplied include file; mikroC will
look for the header file in following locations, in this particular order:

1. the project folder (folder which contains the project file .ppc),
2. mikroC installation folder > “include” folder,
3. your custom search paths.

Explicit Path

If you place an explicit path in the header name, only that directory will be
searched. For example:

#include "C:\my files\test.h"

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ 4@

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Note: There is also a third version of #include directive, rarely used, which
assumes that neither < nor " appears as the first non-whitespace character follow-
ing #include:

#include macro identifier

It assumes a macro definition exists that will expand the macro identifier into a
valid delimited header name with either of the <header name> or
"header name" formats.

Preprocessor Operators

The # (pound sign) is a preprocessor directive when it occurs as the first non-
whitespace character on a line. Also, # and ## perform operator replacement and
merging during the preprocessor scanning phase.

Operator #

In C preprocessor, character sequence enclosed by quotes is considered a token
and its content is not analyzed. This means that macro names within quotes are not
expanded.

If you need an actual argument (the exact sequence of characters within quotes) as
result of preprocessing, you can use the # operator in macro body. It can be placed
in front of a formal macro argument in definition in order to convert the actual
argument to a string after replacement.

For example, let’s have macro LCD PRINT for printing variable name and value
on LCD:

#define LCD_PRINT (val) Led _Out _Cp(#val ": "); \
Lcd Out Cp(IntToStr(val));

(note the backslash as a line-continuation symbol)

ﬂ 5@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

M & slmple... b MIKROC - © COMPILER FOR MICROCHIP PIE MICROCONTROLLERS
Now, the following code,
LCD_PRINT (temp)
will be preprocessed to this:
Lcd Out Cp("temp" ": "); Lcd Out Cp(IntToStr (temp));
Operator ##
Operator #4# is used for token pasting: you can paste (or merge) two tokens togeth-
er by placing ## in between them (plus optional whitespace on either side). The
preprocessor removes the whitespace and the ##, combining the separate tokens

into one new token. This is commonly used for constructing identifiers.

For example, we could define macro SPLICE for pasting two tokens into one iden-
tifier:

#define SPLICE(x,y) x ## ## y

Now, the call SPLICE (cnt, 2) expands to identifier cnt 2.

Note: mikroC does not support the older nonportable method of token pasting
using (1/**/r).

Conditional Compilation

Conditional compilation directives are typically used to make source programs
easy to change and easy to compile in different execution environments. mikroC
supports conditional compilation by replacing the appropriate source-code lines

with a blank line.

All conditional compilation directives must be completed in the source or include
file in which they are begun.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ 5ﬂ

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Directives #if, #elif, #else, and #endif

The conditional directives #if, #elif, #else, and #endif work very similar to
the common C conditional statements. If the expression you write after the #1i £
has a nonzero value, the line group immediately following the #1i £ directive is
retained in the translation unit.

Syntax is:

#if constant expression 1
<section I>

[#elif constant expression 2
<section 2>]

[#elif constant expression n
<section n>]

[#else
<final section>]

#endif

Each #1i £ directive in a source file must be matched by a closing #endi f direc-
tive. Any number of #elif directives can appear between the #if and #endif
directives, but at most one #else directive is allowed. The #else directive, if
present, must be the last directive before #endif.

The sections can be any program text that has meaning to the compiler or the pre-
processor. The preprocessor selects a single section by evaluating the

constant expression following each #if or #elif directive until it finds a
true (nonzero) constant expression. The constant expressions are subject to
macro expansion.

If all occurrences of constant-expression are false, or if no #elif directives
appear, the preprocessor selects the text block after the #else clause. If the
#else clause is omitted and all instances of constant expressioninthe #if
block are false, no section is selected for further processing.

ﬂ 52 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Any processed section can contain further conditional clauses, nested to any
depth. Each nested #else, #elif, or #endif directive belongs to the closest pre-
ceding #i f directive.

The net result of the preceding scenario is that only one code section (possibly
empty) will be compiled.

Directives #ifdef and #ifndef

You can use the #ifdef and #ifndef directives anywhere #if can be used. The
#ifdef and #ifndef conditional directives let you test whether an identifier is
currently defined or not. The line

#ifdef identifier

has exactly the same effect as #if 1 if identifier is currently defined, and the
same effect as #if 0 if identifier is currently undefined. The other directive,
#ifndef, tests true for the “not-defined” condition, producing the opposite
results.

The syntax thereafter follows that of the #1if, #elif, #else, and #endif.

An identifier defined as NULL is considered to be defined.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ 53

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W“? “Wu:

ﬂ 54 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

CHAPTER

MmikroC Libraries

mikroC provides a number of built-in and library routines which help you develop
your application faster and easier. Libraries for ADC, CAN, USART, SPI, 12C, 1-
Wire, LCD, PWM, RS485, Serial Ethernet, Toshiba GLCD, Port Expander, Serial
GLCD, numeric formatting, bit manipulation, and many other are included along
with practical, ready-to-use code examples.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

BUILT-IN ROUTINES

mikroC compiler provides a set of useful built-in utility functions. Built-in func-
tions do not require any header files to be included; you can use them in any part
of your project.

Built-in routines are implemented as “inline”; i.e. code is generated in the place of
the call, so the call doesn’t count against the nested call limit. The only exceptions
are Vdelay ms and Delay Cyc, which are actual C routines.

Note: Lo, Hi, Higher and Highest functions are not implemented in compiler any
more. If you want to use these functions you must include built _in.h into your
project.

Lo

Hi
Higher
Highest

Delay us
Delay ms
Vdelay ms
Delay Cyc
Clock Khz
Clock Mhz

Lo

Prototype unsigned short Lo (long number) ;

Returns Returns the lowest 8 bits (byte) of number, bits 0..7.

Description Function returns the lowest byte of number. Function does not interpret bit patterns of
number — it merely returns 8 bits as found in register.

This is an “inline” routine; code is generated in the place of the call, so the call doesn’t
count against the nested call limit.

Requires Arguments must be scalar type (i.e. Arithmetic Types and Pointers).

Example d = 0x1AC30F4;
tmp = Lo(d); // Equals OxF4

ﬂ 5@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

making & smple... N MIKROC - © COMPILER FOR MICROCHIP PIE MICROCONTROLLERS
Hi
Prototype unsigned short Hi (long number) ;
Returns Returns next to the lowest byte of number, bits 8..15.
Description Function returns next to the lowest byte of number. Function does not interpret bit pat-
terns of number — it merely returns 8 bits as found in register.
This is an “inline” routine; code is generated in the place of the call, so the call doesn’t
count against the nested call limit.
Requires Arguments must be scalar type (i.e. Arithmetic Types and Pointers).
Example d = 0x1AC30F4;
tmp = Hi(d); // Equals 0x30
Higher
Prototype unsigned short Higher (long number) ;
Returns Returns next to the highest byte of number, bits 16..23.
Description Function returns next to the highest byte of number. Function does not interpret bit pat-
terns of number — it merely returns 8 bits as found in register.
This is an “inline” routine; code is generated in the place of the call, so the call doesn’t
count against the nested call limit.
Requires Arguments must be scalar type (i.e. Arithmetic Types and Pointers).
Example d = 0x1AC30F4;
tmp = Higher(d); // Equals O0xAC
Highest
Prototype unsigned short Highest (long number) ;
Returns Returns the highest byte of number, bits 24..31.
Description Function returns the highest byte of number. Function does not interpret bit patterns of
number — it merely returns 8 bits as found in register.
This is an “inline” routine; code is generated in the place of the call, so the call doesn’t
count against the nested call limit.
Requires Arguments must be scalar type (i.e. Arithmetic Types and Pointers).
Example d = 0x1AC30F4;
tmp = Highest(d); // Equals 0x01

MIKROELEKTRONIKA: DEVELOPMENT TOOLS -

BOoOKS - COMPILERS

MIKROD - G BoMPILER FOR MicROCHIE PIC micRocanTRoveRs ________________ making it simple...
Delay_us

Prototype void Delay us(const time in us);

Description Creates a software delay in duration of time in us microseconds (a constant). Range

of applicable constants depends on the oscillator frequency.

Example Delay us(10); /* Ten microseconds pause */
Delay_ms
Prototype void Delay ms(const time in ms);
Description Creates a software delay in duration of time in ms milliseconds (a constant). Range of

applicable constants depends on the oscillator frequency.

Example Delay ms(1000); /* One second pause */
Vdelay_ms
Prototype void Vdelay ms(unsigned time in ms);
Description Creates a software delay in duration of time in ms milliseconds (a variable).

Generated delay is not as precise as the delay created by Delay ms.

Example pause = 1000;
//
Vdelay ms (pause); // ~ one second pause
- Vo T-

ﬂ 5 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

miqul: .

making & simple... o} MIKROD - € COMPILER FOR MICROCHIP PIC MICROCONTROLLERS
Delay_Cyc
Prototype void Delay Cyc(char Cycles div by 10);
Description Creates a delay based on MCU clock. Delay lasts for 10 times the input parameter in
MCU cycles. Input parameter needs to be in range 3 .. 255.
Note that Delay Cyc is library function rather than a built-in routine; it is presented in
this topic for the sake of convenience.
Example Delay Cyc(10); /* Hundred MCU cycles pause */
Clock_Khz
Prototype unsigned Clock Khz (void);
Returns Device clock in KHz, rounded to the nearest integer.
Description Returns device clock in KHz, rounded to the nearest integer.
Example clk = Clock Khz();
Clock_Mhz
Prototype unsigned Clock Mhz (void);
Returns Device clock in MHz, rounded to the nearest integer.
Description Returns device clock in MHz, rounded to the nearest integer.
Example clk = Clock Mhz();

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

LIBRARY ROUTINES

mikroC provides a set of libraries which simplifies the initialization and use of
PIC MCU and its modules. Library functions do not require any header files to be
included; you can use them anywhere in your projects.

Currently available libraries are:
Hardware/PIC-specific Libraries

- ADC Library

- CAN Library

- CANSPI Library

- Compact Flash Library

- EEPROM Library

- Ethernet Library

- SPI Ethernet Library

- Flash Memory Library

- Graphic LCD Library

- T6963C Graphic LCD Library
- I?C Library

- Keypad Library

- LCD Library

- LCD Custom Library

- LCD8 Library

- Manchester Code Library
- Multi Media Card Library
- OneWire Library

- PS/2 Library

- PWM Library

- RS-485 Library

- Software I>C Library

- Software SPI Library

- Software UART Library
- Sound Library

- SPI Library

- USART Library

- USB HID Library

- Util Library

- SPI Graphic LCD Library
- Port Expander Library

ﬂ @@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mé{«lﬂ? ctawkﬁée... MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

- SPI LCD Library
- SPI LCD8 Library
- SPI T6963C Graphic LCD Library

Standard ANSI C Libraries

- ANSI C Ctype Library
- ANSI C Math Library
- ANSI C Stdlib Library
- ANSI C String Library

Miscellaneous Libraries

- Conversions Library
- Trigonometry Library
- sprint Library

- Setjmp Library

- Time Library

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ @ﬂ

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

ADC Library

ADC (Analog to Digital Converter) module is available with a number of PIC
MCU models. Library function Adc_Read is included to provide you comfortable
work with the module.

Adc_Read

Prototype unsigned Adc Read(char channel);

Returns 10-bit unsigned value read from the specified ADC channel.

Description Initializes PIC’s internal ADC module to work with RC clock. Clock determines the
time period necessary for performing AD conversion (min 12TAD).
Parameter channel represents the channel from which the analog value is to be
acquired. For channel-to-pin mapping please refer to documentation for the appropriate
PIC MCU.

Requires PIC MCU with built-in ADC module. You should consult the Datasheet documentation
for specific device (most devices from PIC16/18 families have it).
Before using the function, be sure to configure the appropriate TRISA bits to designate
the pins as input. Also, configure the desired pin as analog input, and set Vref (voltage
reference value).
The function is currently unsupported by the following PICmicros: P18F2331,
P18F2431, P18F4331, and P18F4431.

Example unsigned tmp;
tmp = Adc_Read(l); /* read analog value from channel 1 */

CTpage T

ﬂ @2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikro(: .

Méém? ctdmtﬁée... MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Library Example

/* This code snippet reads analog value from channel 2 and displays
it on PORTD (lower 8 bits) and PORTB (2 most significant bits). */

unsigned temp res;

void main () {

ADCON1 = 0x80; // Configure analog inputs and Vref
TRISA = OxFF; // PORTA is input
TRISB = O0x3F; // Pins RB7, RB6 are outputs
TRISD = 0; // PORTD is output
do {
temp res = Adc Read(2); // Get results of AD conversion
PORTD = temp_ res; // Send lower 8 bits to PORTD
PORTB = temp res >> 2; // Send 2 most significant bits to RB7, RB6

} while (1) ;

Hardware Connection

330 #x LDO

vce E -/ 222] :g — @
[RB5]—\|38— |—|330 @' e
4—4E RA2 23;];’;— %, xx LD2

[-U RB2 I—35 ‘%’ @
= [— e 2: @' LD3
E 9 RB”%— 330 xx LD4

vce —

i i ® LD5

" 5 ee (0] i 330 @

|||%[eno T i ‘%' =
ahosct il 330 @ﬂ LD6

osc2 €J1 1 —
1 N 0 330 prodlias
I (i
vce I E % £
ML~ :
X
2|| Reset 8MHz
_m—
O O

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ @@

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

CAN Library
mikroC provides a library (driver) for working with the CAN module.

CAN is a very robust protocol that has error detection and signalling, self—check-
ing and fault confinement. Faulty CAN data and remote frames are re-transmitted
automatically, similar to the Ethernet.

Data transfer rates vary from up to 1 Mbit/s at network lengths below 40m to 250
Kbit/s at 250m cables, and can go even lower at greater network distances, down
to 200Kbit/s, which is the minimum bitrate defined by the standard. Cables used
are shielded twisted pairs, and maximum cable length is 1000m.

CAN supports two message formats:

Standard format, with 11 identifier bits, and
Extended format, with 29 identifier bits

Note: CAN routines are currently supported only by P18XXX8 PICmicros.
Microcontroller must be connected to CAN transceiver (MCP2551 or similar)
which is connected to CAN bus.

Note: Be sure to check CAN constants necessary for using some of the functions.
See page 145.

Library Routines

CANSetOperationMode
CANGetOperationMode
CANInitialize
CANSetBaudRate
CANSetMask
CANSetFilter
CANRead

CANWrite

Following routines are for the internal use by compiler only:

RegsToCANID
CANIDToRegs

ﬂ @4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

miqul: .

was é_‘_‘ vg & dmpte... ! MIKROE - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS
CANSetOperationMode
Prototype void CANSetOperationMode (char mode, char wait flag);

Description Sets CAN to requested mode, i.e. copies mode to CANSTAT. Parameter mode needs to
be one of CAN_OP_MODE constants (see CAN constants).

Parameter wait flag needs to be either O or OxFF:

If set to OxFF, this is a blocking call — the function won’t “return” until the requested
mode is set. If 0, this is a non-blocking call. It does not verify if CAN module is
switched to requested mode or not. Caller must use function CANGetOperationMode
to verify correct operation mode before performing mode specific operation.

Requires CAN routines are currently supported only by P18XXX8 PICmicros. Microcontroller
must be connected to CAN transceiver (MCP2551 or similar) which is connected to
CAN bus.

Example CANSetOperationMode (CAN MODE CONFIG, OxFF);

CANGetOperationMode

Prototype char CANGetOperationMode (void) ;

Returns Current opmode.

Description Function returns current operational mode of CAN module.

Requires CAN routines are currently supported only by P18XXX8 PICmicros. Microcontroller
must be connected to CAN transceiver (MCP2551 or similar) which is connected to
CAN bus.

Example if (CANGetOperationMode () == CAN MODE NORMAL) { ... };

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ @5

MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS _________________________ " _é‘_’"f_ & semf e_e_.::
CANInitialize
Prototype void CANInitialize (char SJW, char BRP, char PHSEGl, char PHSEG2,

char PROPSEG, char CAN CONFIG FLAGS);

Description Initializes CAN. All pending transmissions are aborted. Sets all mask registers to 0 to
allow all messages. The Config mode is internaly set by this function. Upon a execution
of this function Normal mode is set.

Filter registers are set according to flag value:

if (CAN_CONFIG FLAGS & CAN CONFIG VALID XTD MSG != 0)
// Set all filters to XTD MSG

else if (config & CONFIG VALID STD MSG != 0)
// Set all filters to STD MSG

else

// Set half the filters to STD, and the rest to XTD MSG
Parameters:

SJw as defined in 18XXX8 datasheet (1-4)

BRP as defined in 18XXXS8 datasheet (1-64)

PHSEGLI as defined in 18XXX8 datasheet (1-8)

PHSEG?2 as defined in 18XXX8 datasheet (1-8)

PROPSEG as defined in 18XXXS8 datasheet (1-8)

CAN CONFIG_FLAGS is formed from predefined constants (see CAN constants).

Requires CAN routines are currently supported only by P18XXX8 PICmicros. Microcontroller
must be connected to CAN transceiver (MCP2551 or similar) which is connected to
CAN bus.
Example init = CAN CONFIG_SAMPLE THRICE &
CAN CONFIG PHSEG2 PRG ON &
CAN CONFIG_STD MSG &
CAN CONFIG DBL BUFFER ON &
CAN CONFIG VALID XTD MSG &

CAN CONFIG LINE FILTER OFF;

CANInitialize(l, 1, 3, 3, 1, init); // initialize CAN

ﬂ @@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroG

Méé&? iz simple. .. MIKROEC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS
CANSetBaudRate
Prototype void CANSetBaudRate (char SJW, char BRP, char PHSEGl, char PHSEG2,

char PROPSEG, char CAN CONFIG FLAGS);

Description Sets CAN baud rate. Due to complexity of CAN protocol, you cannot simply force a bps
value. Instead, use this function when CAN is in Config mode. Refer to datasheet for
details.

Parameters:

sJuw as defined in 18XXX8 datasheet (1-4)

BRP as defined in 18XXXS8 datasheet (1-64)

PHSEGI as defined in 18XXX8 datasheet (1-8)

PHSEG2 as defined in 18XXX8 datasheet (1-8)

PROPSEG as defined in 18XXX8 datasheet (1-8)

CAN CONFIG_FLAGS is formed from predefined constants (see CAN constants)

Requires CAN must be in Config mode; otherwise the function will be ignored.

Example init = CAN CONFIG SAMPLE THRICE
CAN CONFIG PHSEG2 PRG ON
CAN CONFIG STD MSG

CAN CONFIG DBL BUFFER ON
CAN CONFIG VALID XTD MSG
CAN CONFIG LINE FILTER OFF;

R 2 2 2 &

CANSetBaudRate (1, 1, 3, 3, 1, init);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ @7

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

CANSetMask

Prototype void CANSetMask (char CAN MASK, long value, char CAN CONFIG FLAGS);

Description Function sets mask for advanced filtering of messages. Given value is bit adjusted to
appropriate buffer mask registers.

Parameters: CAN_MASK is one of predefined constant values (see CAN constants);
value is the mask register value; CAN CONFIG FLAGS selects type of message to filter,
either CAN CONFIG XTD MSG or CAN CONFIG STD MSG

Requires CAN must be in Config mode; otherwise the function will be ignored.

Example // Set all mask bits to 1, i.e. all filtered bits are relevant:
CANSetMask (CAN MASK B1, -1, CAN CONFIG XTD MSG);

/* Note that -1 is just a cheaper way to write OxFFFFFFFF.
Complement will do the trick and fill it up with ones. */

CANSetFilter

Prototype void CANSetFilter (char CAN FILTER, long value,
char CAN CONFIG FLAGS);

Description Function sets mask for advanced filtering of messages. Given value is bit adjusted to
appropriate buffer mask registers.

Parameters: CAN_MASK is one of predefined constant values (see CAN constants);
value is the filter register value; CAN CONFIG FLAGS selects type of message to filter,
either CAN CONFIG XTD MSG Or CAN CONFIG STD MSG.

Requires CAN must be in Config mode; otherwise the function will be ignored.

Example /* Set id of filter Bl F1 to 3: */
CANSetFilter (CAN FILTER Bl F1, 3, CAN CONFIG XTD MSG);

ﬂ @ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

miqul: .

Mé‘”? 634«“41#56 MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS
CANRead
Prototype char CANRead(long *id, char *data, char *datalen, char
*CAN RX MSG_FLAGS) ;
Returns Message from receive buffer or zero if no message found.
Description Function reads message from receive buffer. If at least one full receive buffer is found, it

is extracted and returned. If none found, function returns zero.

Parameters: id is message identifier; data is an array of bytes up to 8 bytes in length;
datalen is data length, from 1-8; CAN RX MSG_FLAGS is value formed from constants
(see CAN constants).

Requires CAN must be in mode in which receiving is possible.

Example char rcv, rx, len, datal 8]; long id;
rcv = CANRead(id, data, len, 0);

CANWrite

Prototype char CANWrite (long id, char *data, char datalen, char
CAN_TX MSG_FLAGS) ;

Returns Returns zero if message cannot be queued (buffer full).

Description If at least one empty transmit buffer is found, function sends message on queue for
transmission. If buffer is full, function returns 0.
Parameters: id is CAN message identifier. Only 11 or 29 bits may be used depending
on message type (standard or extended); data is array of bytes up to 8 bytes in length;
datalen is data length from 1-8; CAN TX MSG_FLAGS is value formed from constants
(see CAN constants).

Requires CAN must be in Normal mode.

Example char tx, data; long id;
tx = CAN TX PRIORITY 0 & CAN TX XTD FRAME;
CANWrite (id, data, 2, tx);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ @@

MIKRODC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

CAN Constants

There is a number of constants predefined in CAN library. To be able to use the
library effectively, you need to be familiar with these. You might want to check

the example at the end of the chapter.

CAN_OP_ MODE

can_op_ MODE constants define CAN operation mode. Function

CANSetOperationMode expects one of these as its argument:

#define CAN MODE BITS
#define CAN MODE NORMAL
#define CAN MODE SLEEP
#define CAN MODE LOOP
#define CAN MODE LISTEN
#define CAN MODE CONFIG

CAN_CONFIG_FLAGS

0xEQ
0

0x20
0x40
0x60
0x80

// Use it to access mode bits

CAN CONFIG FLAGS constants define flags related to CAN module configuration.
Functions caNInitialize and CANSetBaudRate expect one of these (or a bitwise

combination) as their argument:

#define CAN_CONFIG DEFAULT

#define CAN CONFIG_PHSEG2 PRG BIT
#define CAN CONFIG_PHSEG2 PRG ON
#define CAN CONFIG_ PHSEG2 PRG OFF

#define CAN CONFIG _LINE FILTER BIT
#define CAN CONFIG_LINE FILTER ON
#define CAN CONFIG_LINE FILTER OFF

#define CAN CONFIG_SAMPLE BIT
#define CAN CONFIG_SAMPLE ONCE

#define CAN_ CONFIG_SAMPLE THRICE

#define CAN CONFIG_MSG_TYPE BIT

#define CAN CONFIG_STD MSG
#define CAN CONFIG_XTD MSG

// continues..

OxFF

0x01
OxFF
OxXFE

0x02
OxFF
OxFD

0x04
OxFF
O0xFB

0x08
OxFF
OxFE7

//

//
//

//
//

//
//

//
//

11111111

XXXXXXX1
XXXXXXX0

XXXXXX1X
XXXXXX0X

XXXXX1XX
XXXXX0XX

XXXX1IXXX
XXXX0XXX

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS -

COMPILERS

‘_’z_‘;_‘é_"_“_?__‘.{_df.‘_"¢__e_e:'_' ____________________________ hd_ |_K_RE|_E - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

// ..continued

#define CAN CONFIG DBL BUFFER BIT 0x10

#define CAN CONFIG DBL BUFFER ON 0xFF // XXXIXXXX

#define CAN CONFIG DBL BUFFER OFF 0xEF // XXXO0XXXX

#define CAN CONFIG MSG BITS 0x60

#define CAN CONFIG ALL MSG 0xFF // X11XXXXX

#define CAN CONFIG VALID XTD MSG 0xDF // XI10XXXXX

#define CAN CONFIG _VALID STD MSG 0xBF // XO0IXXXXX

#define CAN CONFIG_ALL VALID MSG 0x9F // XO00XXXXX

You may use bitwise AND (&) to form config byte out of these values. For exam-

ple:

init = CAN_CONFIG_SAMPLE_THRICE & CAN_CONFIG_PHSEGZ_PRG_ON &
CAN CONFIG_STD MSG & CAN _CONFIG DBI_BUFFER ON &
CAN CONFIG VALID XTD MSG & CAN CONFIG LINE FILTER OFF;

V2

CANInitialize(1l, 1, 3, 3, 1, init); // initialize CAN

CAN_TX MSG_FLAGS

CAN Tx MSG_FLAGs are flags related to transmission of a CAN message:

#define CAN TX PRIORITY BITS 0x03

#define CAN TX PRIORITY 0 0xFC // XXXXXX00
#define CAN TX PRIORITY 1 OxFD // XXXXXX01
#define CAN TX PRIORITY 2 OxFE // XXXXXX10
#define CAN TX PRIORITY 3 OxFF // XXXXXX11
#define CAN TX FRAME BIT 0x08

#define CAN TX STD FRAME OxFF // XXXXXIXX
#define CAN_TX XTD FRAME OxF7 // XXXXX0XX
#define CAN TX RTR BIT 0x40

#define CAN TX NO RTR FRAME OxFF // XI1XXXXXX
#define CAN TX RTR FRAME O0xBF // XO0XXXXXX

You may use bitwise AND (&) to adjust the appropriate flags. For example:

/* form value to be used with CANSendMessage: */

send config = CAN TX PRIORITY 0 && CAN TX XTD FRAME &
CAN TX NO RTR FRAME;

Y

CANSendMessage (id, data, 1, send config);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ 7ﬂ

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

CAN_RX MSG_FLAGS

CAN RX MSG FLAGS are flags related to reception of CAN message. If a particular
bit is set; corresponding meaning is TRUE or else it will be FALSE.

#define CAN_RX FILTER BITS O0x07 // Use it to access filter bits
#define CAN RX FILTER 1 0x00

#define CAN RX FILTER 2 0x01

#define CAN RX FILTER 3 0x02

#define CAN RX FILTER 4 0x03

#define CAN RX FILTER 5 0x04

#define CAN RX FILTER 6 0x05

#define CAN RX OVERFLOW 0x08 // Set if Overflowed; else clear
#define CAN RX INVALID MSG 0x10 // Set if invalid; else clear
#define CAN RX XTD FRAME 0x20 // Set if XTD msg; else clear
#define CAN RX RTR FRAME 0x40 // Set if RTR msg; else clear

#define CAN RX DBL BUFFERED 0x80 // Set if msg was
// hardware double-buffered

You may use bitwise AND (&) to adjust the appropriate flags. For example:

if (MsgFlag & CAN RX OVERFLOW != 0) {
// Receiver overflow has occurred; previous message 1s lost.

CAN_MASK

CAN MASK constants define mask codes. Function CANSetMask expects one of
these as its argument:

#define CAN MASK Bl 0
#define CAN MASK B2 1

CAN_ FILTER

CAN_FILTER constants define filter codes. Function caNsetFilter expects one of
these as its argument:

#define CAN_FILTER Bl F1
#define CAN_FILTER Bl F2
#define CAN_FILTER B2 F1
#define CAN_FILTER B2 F2
#define CAN_FILTER B2 F3
#define CAN_FILTER B2 F4

g W NP O

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroc .

Méé&? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Library Example

unsigned short aa, aal, len, aa2;
unsigned char data[8] ;

long id;

unsigned short zr, cont, oldstate;

void main () {
PORTC
TRISC =
PORTD
TRISD
aa =
aal =
aaz

Il Il
.~

o O O o
~

~.

~.

o o o l
<

~.

// Form value to be used with CANSendMessage
aal = CAN TX PRIORITY 0 &

CAN TX XTD FRAME &

CAN TX NO RTR FRAME;

// Form value to be used with CANInitialize
aa = CAN_CONFIG_SAMPLE_THRICE &
CAN CONFIG PHSEG2 PRG ON
CAN CONFIG_STD MSG
CAN CONFIG DBL BUFFER ON
CAN CONFIG VALID XTD MSG
CAN CONFIG LINE FILTER OFF;

&
&
&
&

datal 0] = O;

// Initialize CAN
CANInitialize(1,1,3,3,1,aa);

// Set CAN to CONFIG mode
CANSetOperationMode (CAN MODE CONFIG, OXFF) ;

// continues

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W"? de'

// .. continued

// Set all maskl bits to ones
CANSetMask (CAN_MASK_Bl , 1D, CAN_CONFIG_XTD_MSG) ;

// Set all mask2 bits to ones
CANSetMask (CAN MASK B2,ID,CAN CONFIG XTD MSG);

// Set id of filter BI F1 to 3
CANSetFilter (CAN FILTER B2 F3,3,CAN CONFIG XTD MSG);

// Set CAN to NORMAL mode
CANSetOperationMode (CAN MODE NORMAL, OXFF) ;

PORTD = OXxFF;
id = 12111;
CANWrite (id,data,1l,aal); // Send message via CAN

while (1) {
oldstate = 0;
zr = CANRead (&id, data , &len, &aa2);

if ((id == 3) & zr) {
PORTD = OxAA;
PORTC = data[0] ; // Output data at PORTC

datal 0] ++ ;

// If message contains two data bytes, output second byte at PORTD

if (len == 2) PORTD = datal 1] ;

datal 1] = OxFF;

id = 12111;

CANWrite (id, data, 2,aal); // Send incremented data back

Y/

ﬂ 74 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

méap? ct simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Hardware Connection

» CAN TX of MCU

—» CAN RX of MCU

=
o

1

| —

1 N4
L] Tx-cAN Rs

GND CANH

VvCcC }—|4 VCC CANL
L J|RXD Vref

MCP2551

T
G

Shielded pair / L“

no longer than 300m

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ 75

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

CANSPI Library

SPI module is available with a number of PICmicros. mikroC provides a library
(driver) for working with the external CAN modules (such as MCP2515 or
MCP2510) via SPL

In mikroC, each routine of CAN library has its CANSPI counterpart with identical
syntax. For more information on the Controller Area Network, consult the CAN
Library. Note that the effective communication speed depends on the SPI, and is
certainly slower than the “real” CAN.

Note: CANSPI functions are supported by any PIC MCU that has SPI interface on
PORTC. Also, CS pin of MCP2510 or MCP2515 must be connected to RCO.
Example of HW connection is given at the end of the chapter.

Note: Be sure to check CAN constants necessary for using some of the functions.
See page 145.

Note: spT_1nit () must be called before initializing CANSPI.

Library Routines

CANSPISetOperationMode
CANSPIGetOperationMode
CANSPIInitialize
CANSPISetBaudRate
CANSPISetMask
CANSPISetFilter
CANSPIRead

CANSPIWrite

Following routines are for the internal use by compiler only:

RegsToCANSPIID
CANSPIIDToRegs

ﬂ 7@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

miqul: .

Mé{«”? ctawu«ﬂée... MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

CANSPISetOperationMode

Prototype void CANSPISetOperationMode (char mode, char wait flag);

Description Sets CAN to requested mode, i.e. copies mode to CANSTAT. Parameter mode needs to
be one of CAN_OP_MODE constants (see CAN constants, page 145).

Parameter wait flag needs to be either 0 or OxFF: If set to OxFF, this is a blocking
call — the function won’t “return” until the requested mode is set. If 0, this is a non-
blocking call. It does not verify if CAN module is switched to requested mode or not.
Caller must use function CANSPIGetOperationMode to verify correct operation mode
before performing mode specific operation.

Requires CANSPI functions are supported by any PIC MCU that has SPI interface on PORTC.
Also, CS pin of MCP2510 or MCP2515 must be connected to RCO.

Example CANSPISetOperationMode (CAN MODE CONFIG, OxFF);

CANSPIGetOperationMode

Prototype char CANSPIGetOperationMode (void) ;

Returns Current opmode.

Description Function returns current operational mode of CAN module.

Example if (CANSPIGetOperationMode () == CAN MODE NORMAL) { ... };

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ 77

MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS _________________________ " _é‘_’"_?_ G smple. ..
CANSPIInitialize
Prototype void CANSPIInitialize (char SJW, char BRP, char PHSEG1l, char

PHSEG2, char PROPSEG, char CAN CONFIG FLAGS, char * RstPort, char
RstPin, char * CSPort, char CSPin);

Description Initializes CANSPI. All pending transmissions are aborted. Sets all mask registers to 0
to allow all messages.

Filter registers are set according to flag value:

if (CAN CONFIG FLAGS & CAN CONFIG VALID XTD MSG != 0)
// Set all filters to XTD MSG

else if (config & CONFIG VALID STD MSG = 0)
// Set all filters to STD MSG

else

// Set half the filters to STD, and the rest to XTD MSG
Parameters:

sJuw as defined in 18XXX8 datasheet (1-4)

BRP as defined in 18XXXS8 datasheet (1-64)

PHSEGI as defined in 18XXX8 datasheet (1-8)

PHSEG2 as defined in 18XXX8 datasheet (1-8)

PROPSEG as defined in 18XXXS8 datasheet (1-8)

CAN CONFIG_FLAGS is formed from predefined constants (see CAN constants, page
145).

Requires SPI_Init () must be called before initializing CANSPI.
CANSPI must be in Config mode; otherwise the function will be ignored.

Example init = CAN CONFIG_SAMPLE THRICE
CAN CONFIG_PHSEG2 PRG ON
CAN_ CONFIG_STD MSG
CAN_CONFIG _DBL BUFFER ON
CAN_CONFIG _VALID XTD MSG
CAN CONFIG _LINE FILTER OFF;

R 2 2 2 &

// initialize external CAN module
CANSPIInitialize(1,1,3,3,1,init, &PORTC, 2, &PORTC, O0);

ﬂ 7 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroG

was é_"_‘ vg & semple...] MIKROE - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS
CANSPISetBaudRate
Prototype void CANSPISetBaudRate (char SJW, char BRP, char PHSEG1l, char

PHSEG2, char PROPSEG, char CAN CONFIG FLAGS) ;

Description Sets CANSPI baud rate. Due to complexity of CANSPI protocol, you cannot simply
force a bps value. Instead, use this function when CANSPI is in Config mode. Refer to
datasheet for details.

Parameters:

sJu as defined in 18XXX8 datasheet (1-4)

BRP as defined in 18XXXS8 datasheet (1-64)

PHSEGI as defined in 18XXX8 datasheet (1-8)

PHSEG?2 as defined in 18XXX8 datasheet (1-8)

PROPSEG as defined in 18XXX8 datasheet (1-8)

CAN CONFIG_FLAGS is formed from predefined constants (see CAN constants)

Requires CANSPI must be in Config mode; otherwise the function will be ignored.

Example init = CAN CONFIG_SAMPLE THRICE
CAN_ CONFIG_PHSEG2 PRG ON
CAN_CONFIG_STD MSG
CAN_CONFIG DBL BUFFER ON
CAN_CONFIG _VALID XTD MSG
CAN CONFIG _LINE FILTER OFF;

R 2 2 2 &

CANSPISetBaudRate (1, 1, 3, 3, 1, init);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ 7@

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

CANSPISetMask

Prototype void CANSPISetMask (char CAN MASK, long value, char
CAN CONFIG FLAGS) ;

Description Function sets mask for advanced filtering of messages. Given value is bit adjusted to
appropriate buffer mask registers.

Parameters: CAN MASK is one of predefined constant values (see CAN constants);
value is the mask register value; CAN CONFIG FLAGS selects type of message to filter,
either CAN CONFIG XTD MSG or CAN CONFIG STD MSG.

Requires CANSPI must be in Config mode; otherwise the function will be ignored.

Example // Set all mask bits to 1, i.e. all filtered bits are relevant:
CANSPISetMaSk(CAN_MASK_B]_, -1, CAN_CONFIG_XTD_MSG);

/* Note that -1 is just a cheaper way to write OxFFFFFFFF.
Complement will do the trick and fill it up with ones. */

CANSPISetFilter

Prototype void CANSPISetFilter (char CAN FILTER, long value,
char CAN CONFIG FLAGS);

Description Function sets mask for advanced filtering of messages. Given value is bit adjusted to
appropriate buffer mask registers.

Parameters: CAN_MASK is one of predefined constant values (see CAN constants);
value is the filter register value; CAN CONFIG FLAGS selects type of message to filter,
either CAN CONFIG XTD MSG or CAN CONFIG STD MSG.

Requires CANSPI must be in Config mode; otherwise the function will be ignored.

Example /* Set id of filter Bl F1 to 3: */
CANSPISetFilter (CAN FILTER Bl F1, 3, CAN CONFIG XTD MSG);

ﬂ @ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroG

Méé&? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

CANSPIRead

Prototype char CANSPIRead(long *id, char *data, char *datalen, char
*CAN RX MSG_FLAGS) ;

Returns Message from receive buffer or zero if no message found.

Description Function reads message from receive buffer. If at least one full receive buffer is found, it
is extracted and returned. If none found, function returns zero.

Parameters: id is message identifier; data is an array of bytes up to 8 bytes in length;
datalen is data length, from 1-8; CAN RX MSG_FLAGS is value formed from constants
(see CAN constants).

Requires CANSPI must be in mode in which receiving is possible.

Example char rcv, rx, len, datal 8]; long id;
rcv = CANSPIRead(id, data, len, 0);

CANSPIWrite
Prototype char CANSPIWrite (long id, char *data, char datalen, char
CAN TX MSG FLAGS) ;
Returns Returns zero if message cannot be queued (buffer full).
Description If at least one empty transmit buffer is found, function sends message on queue for

transmission. If buffer is full, function returns 0.

Parameters: id is CANSPI message identifier. Only 11 or 29 bits may be used depend-
ing on message type (standard or extended); data is array of bytes up to 8 bytes in
length; datalen is data length from 1-8; CAN TX MSG FLAGS is value formed from
constants (see CAN constants).

Requires CANSPI must be in Normal mode.

Example char tx, data; long id;
tx = CAN TX PRIORITY 0 & CAN TX XTD FRAME;
CANSPIWrite (id, data, 2, tx);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ ﬂ

MIKRODC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Library Example

The code is a simple demonstration of CANSPI protocol. It is a simple data exchange between 2
PIC’s, where data is incremented upon each bounce. Data is printed on PORTC (lower byte) and

PORTD (higher byte) for a visual check.

char datal 8] ,aa, aal, len, aaZ2;
long id;

char zr;

const char TRUE = OxFF;
const char FALSE = 0x00;

void main (){

TRISB = 0;

Spi Init(); // Initialize SPI module
TRISC.F2 = 0; // Clear (TRISC,2)
PORTC.F2 = 0; // Clear (PORTC,2)
PORTC.FO = 1; // Set (PORTC,0)
TRISC.FO = 0; // Clear (TRISC,0)
PORTD = 0;

TRISD = 0;

aa = 0;

aal = 0y

aaz2 = 0;

// Form value to be used with CANSPIInitialize

aa = CAN CONFIG SAMPLE THRICE &
CAN CONFIG PHSEG2 PRG ON &
CAN CONFIG STD MSG &
CAN CONFIG DBL BUFFER ON &
CAN CONFIG VALID XTD MSG;

PORTC.F2 = 1; // Set (PORTC,2)

// Form value to be used with CANSPISendMessage

aal = CAN TX PRIORITY 0 &
CAN TX XTD FRAME &
CAN TX NO RTR FRAME;

PORTC.FO = 1; // Set (PORTC,0)

// continues

ﬂ 2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS -

BOoks -

COMPILERS

mikro(: .

Méém? ctdmtﬁée... MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

// .. continued
Spi Init(); // Initialize SPI

// Initialize external CAN module
CANSPIInitialize(1,1,3,3,1,aa, &PORTC, 2, &PORTC, 0);

// Set CANSPI to CONFIG mode
CANSPISetOperationMode (CAN MODE CONFIG, TRUE);
ID = -1;

// Set all maskl bits to ones
CANSPISetMask (CAN MASK Bl,id,CAN CONFIG XTD MSG);

// Set all mask2 bits to ones
CANSPISetMask (CAN MASK B2,1id,CAN CONFIG XTD MSG);

// Set id of filter Bl F1 to 12111
CANSPISetFilter (CAN FILTER B2 F4,12111,CAN CONFIG XTD MSG) ;

// Set CANSPI to NORMAL mode
CANSPISetOperationMode (CAN MODE NORMAL, TRUE);

while (1) {
zr = CANSPIRead(&id , &Data , &len, &aa2); // Receive data, 1f any
if (id == 12111 & zr) {
PORTB = datal 0] ++ ; // Output data on PORTB
id = 3;

Delay ms (500);

// Send incremented data back
CANSPIWrite (id, &data,1l,aal);

// If message contains 2 data bytes, output second byte at PORTD

if (len == 2) PORTD = data[1] ;

y /!

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W (ZW...

Hardware Connection

vcC
100K|:] D vce E Y %
14 18 [J
[t vdd }J 0 il
2lrx RST [[I
—3IE CLKO Cs]16 [U]
—|4 TX0 SO I—15 E 5 RB]|733
45[™1 sI]147 g
61— 013 vece [-_ 1
47[™ sck |- EE fore) il
osc2 INT [———— 1vee 0
1 2] osc1r¥o8 [— oo 1 1
I—T—’f[e o [oser g)
8 Mhz
— ——= wmcP2s10 _ RN %
RCS[1 e
RC3 Rea[}22—
1o | i
[
1 ./ 8
L[] TxcAN Rs [|—
I”—z[GND CANH [———
VCC}—S[VCC CANL]6—
—4[RXD Vref]i

MCP2551

ﬂ 4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Compact Flash Library

Compact Flash Library provides routines for accessing data on Compact Flash
card (abbrev. CF further in text). CF cards are widely used memory elements,
commonly found in digital cameras. Great capacity (§SMB ~ 2GB, and more) and
excellent access time of typically few microseconds make them very attractive for
microcontroller applications.

In CF card, data is divided into sectors, one sector usually comprising 512 bytes

(few older models have sectors of 256B). Read and write operations are not per-

formed directly, but successively through 512B buffer. Following routines can be
used for CF with FAT16, and FAT32 file system. Note that routines for file han-

dling can be used only with FAT16 file system.

Important! Before write operation, make sure you don’t overwrite boot or FAT
sector as it could make your card on PC or digital cam unreadable. Drive mapping
tools, such as Winhex, can be of a great assistance.

Library Routines

Cf Init

Cf Detect

Cf Total Size
Cf Enable

Cf Disable

Cf Read Init
Cf Read Byte
Cf Write Init
Cf Write Byte

Cf Fat Init

Cf Fat Assign

Cf Fat Reset

Cf Fat Read

Cf Fat Rewrite

Cf Fat Append

Cf Fat Delete

Cf Fat Write

Cf Fat Set File Date
Cf Fat Get File Date
Cf Fat Get File Size

Function Cf_Set Reg Adr is for compiler internal purpose only.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ 5

MIKROD - C GOMPILER FOR MIGROCHIP PIC MICROCONTROLLERS e W o simple...
Cf_Init
Prototype void Cf Init (char *ctrlport, char *dataport);
Description Initializes ports appropriately for communication with CF card. Specify two different

ports: ctrlport and dataport.

Example Cf Init (&PORTB, &PORTD);
Cf_Detect
Prototype char Cf Detect (void);
Returns Returns 1 if CF is present, otherwise returns 0.
Description Checks for presence of CF card on ctrlport.
Example // Wait until CF card 1s inserted:
do nop; while (Cf Detect () == 0);

Cf_Total_Size

Prototype unsigned long Cf Total Size(wvoid);
Returns Card size in kilobytes.
Description Returns size of Compact Flash card in kilobytes.
Requires Ports must be initialized. See Cf Init.
Example size = Cf Total Size();
CTpage T

ﬂ @ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

miqul: .

making & smple... N MIKROC - © COMPILER FOR MICROCHIP PIE MICROCONTROLLERS
Cf_Enable
Prototype void Cf Enable (void) ;
Description Enables the device. Routine needs to be called only if you have disabled the device by

means of Cf Disable. These two routines in conjuction allow you to free/occupy data
line when working with multiple devices. Check the example at the end of the chapter.

Requires Ports must be initialized. See Cf Init.
Example Cf Enable();
Cf_Disable
Prototype void Cf Disable(wvoid);
Description Routine disables the device and frees the data line for other devices. To enable the

device again, call Cf_Enable. These two routines in conjuction allow you to free/occu-
py data line when working with multiple devices. Check the example at the end of the

chapter.
Requires Ports must be initialized. See Cf Init.
Example Cf Disable();

Cf_Read_Init

Prototype void Cf Read Init(long address, char sectcnt);

Description Initializes CF card for reading. Parameter address specifies sector address from where
data will be read, and sectcnt is the number of sectors prepared for reading operation.

Requires Ports must be initialized. See Cf Init.

Example Cf Read Init (590, 1);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ 7

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

Cf_Read_Byte

Prototype char Cf Read Byte(wvoid);

Returns Returns byte from CF.

Description Reads one byte from CF.

Requires CF must be initialized for read operation. See Cf Read Init.

Example PORTC = Cf Read Byte(); // Read byte and display it on PORTC

Cf_Write_lInit

Prototype void Cf Write Init(long address, char sectcnt);

Description Initializes CF card for writing. Parameter address specifies sector address where data
will be stored, and sectcnt is total number of sectors prepared for write operation.

Requires Ports must be initialized. See Cf Init.

Example Cf Write Init (590, 1);

Cf_Write_Byte

Prototype void Cf Write Byte(char data);

Description Writes one byte (data) to CF. All 512 bytes are transferred to a buffer.

Requires CF must be initialized for write operation. See Cf Write Init.
Example Cf Write Byte(100);
Cpage e

ﬂ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

miqul: .

Wf{%:-_- ________ MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS
Cf_Fat_Init
Prototype void Cf Fat Init (unsigned short *control port, unsigned short wr,

rd, a2, al, a0, ry, ce, cd, unsigned short *data port);

Returns Returns 0 if initialization is successful, 1 if boot sector was not found and 255 if card
was not detected.

Description Initializes ports appropriately for FAT operations with CF card. Specify two different
ports: ctrlport and dataport. wr, rd, a2, al, a0, ry, ce and cd are pin nummbers on control

port.
Requires Nothing.
Example CF_Fat Init (PORTD,6,5,2,1,0,7,3,4, PORTC);

Cf_Fat_Assign

Prototype unsigned short Cf Fat Assign(char *filename, char create file);

Returns "1" is file is present(or file isn't present but new file is created), or "0" if file isn't present
and no new file is created.

Description Assigns file for FAT operations. If file isn't present, function creates new file with given
filename. filename parameter is name of file (filename must be in format 8.3 UPPER-
CASE). create file is a parameter for creating new files. if create file if different from 0
then new file is created (if there is no file with given filename).

Requires Ports must be initialized for FAT operations with CF. See Cf Fat Init.

Example Cf Fat Assign('MIKROELE.TXT',1);

Cf_Fat_Reset

Prototype void Cf fat Reset (unsigned long *size);

Returns Size of file in bytes. Size is stored on address of input variable.
Description Opens assigned file for reading.

Requires Ports must be initialized for FAT operations with CF. See Cf Fat Init.

File must be assigned. See Cf Fat Assign.

Example Cf Fat Reset(size);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ @

MIKROD : € COMPILER FOR MIGROCHIR PIC_MICROGONTROLLERS _ ____________________"aking & slmple...
Cf_Fat_Read
Prototype void Cf Fat Read(unsigned short *bdata);
Description Reads data from file. bdata is data read from file.
Requires Ports must be initialized for FAT operations with CF. See Cf Fat Init.
File must be assigned. See Cf Fat Assign.
File must be open for reading. See Cf Fat Reset.
Example Cf Fat Read(character);

Cf_Fat_Rewrite

Prototype void Cf Fat Rewrite();

Returns Nothing.

Description Rewrites assigned file.

Requires Ports must be initialized for FAT operations with CF. See Cf Fat Init.
File must be assigned. See Cf Fat Assign.

Example Cf Fat Rewrite;

Cf_Fat_Append

Prototype void Cf fat Append();
Returns Nothing.
Description Opens file for writing. This procedure continues writing from the last byte in file.
Requires Ports must be initialized for FAT operations with CF. See Cf Fat Init.
File must be assigned. See Cf Fat Assign.
Example Cf Fat Append;
CTpage T

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS -

COMPILERS

miqul: .

MIKROC -

Cf_Fat_Delete

C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Proﬂnype void Cf Fat Delete();

Description Deletes file from CF.

Requires Ports must be initialized for FAT operations with CF. See Cf Fat Init.
File must be assigned. See Cf Fat Assign.

Example Cf Fat Delete;

Cf_Fat_Write

Prototype void Cf Fat Write(char *fdata, unsigned data len);

Returns Nothing.

Description Writes data to CF. fdata parameter is data written to CF. data_len number of bytes that
is written to CF.

Requires Ports must be initialized for FAT operations with CF. See Cf Fat Init.
File must be assigned. See Cf Fat Assign.
File must be open for writing. See Cf Fat Rewrite or Cf Fat Append.

Example Cf Fat Write(file contents, 42); // write data to the assigned

file

Cf_Fat_Set_File_Date

Prototype void Cf fat Set File Date(unsigned int year, unsigned short
month, unsigned short day, unsigned short hours, unsigned short
mins, unsigned short seconds);

Returns Nothing.

Description Sets time attributes of file.You can set file year, month, day. hours, mins, seconds.

Requires Ports must be initialized for FAT operations with CF. See Cf Fat Init.

File must be assigned. See Cf Fat Assign.
File must be open for writing. See Cf Fat Rewrite or Cf Fat Append.

Exanqﬂe Cf Fat Set File Date(2005,9,30,17,41,0);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Cf_Fat_Get_File_Date

Prototype void Cf Fat Get File Date(unsigned int *year, unsigned short
*month, unsigned short *day, unsigned short *hours, unsigned
short *mins);

Description Reads time attributes of file.You can read file year, month, day. hours, mins.

Requires Ports must be initialized for FAT operations with CF. See Cf Fat Init.
File must be assigned. See Cf Fat Assign.

Example Cf Fat Get File Date(year, month, day, hours, mins);

Cf_Fat_Get_File_Size

Prototype unsigned long Cf fat Get File Size();
Returns Size of file in bytes.
Description This function returns size of file in bytes.
Requires Ports must be initialized for FAT operations with CF. See Cf Fat Init.
File must be assigned. See Cf Fat Assign.
Example Cf Fat Get File Size;
CTpage T

ﬂ @2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroc .

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Library Example

The following example writes 512 bytes at sector n0.590, and then reads the data and prints on
PORTC for a visual check.

unsigned i;

void main () {
TRISC = 0; // PORTC 1s output
Cf Init (&PORTB, &PORTD) ; // Initialize ports
do nop;
while (!Cf Detect()); // Wait until CF card is inserted

Delay ms (500);
Cf Write Init (590, 1); // Initialize write at sector address 590

// Write 512 bytes to sector (590)
for (i = 0; 1 < 512; i++) Cf Write Byte(i + 11);

PORTC = OxFF;
Delay ms(1000);
Cf Read Init (590, 1); // Initialize read at sector address 590

// Read 512 bytes from sector (590)

for (i = 0; 1 < 512; 1i++) {
PORTC = Cf Read Byte(); // Read byte and display on PORTC
Delay ms(1000);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ @@

MIKRODC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

HW Connection

I
I
I
I
I
I
I
I
vee [
I 1 [[
vce
= :: GND
osc1
osc2
[{reco
I
=
19 roo
2 E RD1

RD7

d

¢G¥4810ld

RB7 40
RB6 39
RB5[]—2
RB4 37
RB3 36
RB2[]—>
RB1 34
RBO[]—

1
RD7 :I 30
RD6 29
RD5[}28
RD4 27

1

1

1
RD3 2
ro2[}2!

RD6

RD5

RD4

RD3
RD2
RD1
RDO

S
&

[

s
&

RB7
RB6

N
&

W
8

RBS
RB4
RB3

RB2

N
k3

RB1

RBO

o000 oo

Compact Flash
Card

—

R25 vcc

10K !

——

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS -

COMPILERS

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Compact Flash FAT Library v2.xx

This is Compact Flash FAT library from previous version (v2.1). This library is included
because of users that have developed projects with old CF library.

NOTE

This version of Compact Flash FAT library is deprecated. There will be no longer develop-
ment for this version of library. Please use new version of Compact Flash library for your
projects.

Important! File accessing routines can write file. File names must be exactly 8 characters
long and written in uppercase. User must ensure different names for each file, as CF rou-
tines will not check for possible match.

Important! Before write operation, make sure you don’t overwrite boot or FAT sector as it
could make your card on PC or digital cam unreadable. Drive mapping tools, such as
Winhex, can be of a great assistance.

Library Routines

Cf Find File

Cf File Write Init

Cf File Write Byte

Cf Read Sector

Cf Write Sector

Cf Set File Date

Cf File Write Complete

Cf_Find_File

Prototype void Cf Find File(unsigned short find first, char *file name);

Description Routine looks for files on CF card. Parameter find first can be non-zero or zero; if non-
zero, routine looks for the first file on card, in order of physical writing. Otherwise, rou-
tine “moves forward” to the next file from the current position, again in physical order.
If file is found, routine writes its name and extension in the string file name. If no file is
found, the string will be filled with zeroes.

Requires Ports must be initialized.

Example Cf Find File(1l, file);
if (file[0]) {
...// 1f first file found, handle it}

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ @5

MIKRODC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Cf_File_Write_lInit

Prototype void Cf File Write Init(woid);

Description Initializes CF card for file writing operation (FAT16 only).
Requires Ports must be initialized. See Cf Init.

Example Cf File Write Init();

Cf_File_Write_Byte

Prototype void Cf File Write Byte(char data);

Description Adds one byte (data) to file. You can supply ASCII value as parameter, for example 48
for zero.

Requires CF must be initialized for file write operation. See Cf File Write Init.

Example // Write 50,000 zeroces (bytes) to file:
for (i = 0; i < 50000; i++) Cf File Write Byte (48);

Cf_Read_Sector

Prototype void Cf Read Sector (int sector number, unsigned short *buffer);
Description Reads one sector (sector number) into buffer.
Requires CF must be initialized for file write operation. See Cf Init.
Example Cf Read Sector (22, data);
CTpage T

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS -

COMPILERS

mikroG

Méé&? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Cf_Write_Sector

Prototype void Cf Write Sector (int sector number, unsigned short *buffer);
Description Writes value from buffer to CF sector at sector number.

Requires CF must be initialized for file write operation. See Cf_Init.

Exanqﬂe Cf Write Sector (22, data);

Cf_Set_File_Date

Prototype void Cf Set File Date(int year, char month,day,hours,min, sec);
Description Writes system timestamp to a file. Use this routine before finalizing a file; otherwise,
file will be appended a random timestamp.
Requires CF must be initialized for file write operation. See Cf File Write Init.
Example // April 1st 2005, 18:07:00
Cf Set File Date(2005,4,1,18,7,0);

Cf_File_Write_Complete

Prototype void Cf File Write Complete (char filename[8] , char *extension);

Description Finalizes writing to file. Upon all data has be written to file, use this function to close
the file and make it readable. Parameter £ilename must be 8 chars long in uppercase.

Requires CF must be initialized for file write operation. See Cf File Write Init.

Example Cf File Write Complete("MY FILE1","txt");

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

EEPROM Library

EEPROM data memory is available with a number of PICmicros. mikroC includes
library for comfortable work with EEPROM.

Library Routines

Eeprom Read
Eeprom Write

Eeprom_Read

Prototype unsigned short Eeprom Read (unsigned short address);
Returns Returns byte from the specified address.
Description Reads data from specified address. Parameter address is of integer type, which means it

supports MCUs with more than 256 bytes of EEPROM.

Requires Requires EEPROM module.

Ensure minimum 20ms delay between successive use of routines Eeprom Write and
Eeprom_Read. Although PIC will write the correct value, Eeprom Read might return
an undefined result.

Example char take;

take = Eeprom Read (0x3F);

ﬂ @ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

miqul: .

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Eeprom_Read

Prototype void Eeprom Write (unsigned int address, unsigned short data);

Description Writes data to specified address. PParameter address is of integer type, which means it
supports MCUs with more than 256 bytes of EEPROM.

Be aware that all interrupts will be disabled during execution of Eeprom Write routine
(GIE bit of INTCON register will be cleared). Routine will restore previous state of this
bit on exit.

Requires Requires EEPROM module.

Ensure minimum 20ms delay between successive use of routines Eeprom Write and
Eeprom_ Read. Although PIC will write the correct value, Eeprom Read might return
an undefined result.

Example Eeprom Write (0x32);

Library Example

unsigned short i = 0, j = 0;
void main() {

PORTB = 0;

TRISB = 0;

j =4

for (i = 0; i < 20u; i++)

Eeprom Write (i, j++);

for (1 = 0; 1 < 20u; 1i++) {
PORTB = Eeprom Read(i);
Delay ms(500);
}
y//~!

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS ﬂ @@

MIKRODC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Ethernet Library

This library is designed to simplify handling of the underlying hardware
(RTL8019AS). However, certain level of knowledge about the Ethernet and
Ethernet-based protocols (ARP, IP, TCP/IP, UDP/IP, ICMP/IP) is expected from
the user. The Ethernet is a high—speed and versatile protocol, but it is not a simple
one. Once you get used to it, however, you will make your favorite PIC available
to a much broader audience than you could do with the RS232/485 or CAN.

Library Routines

Eth Init

Eth Set Ip Address

Eth Inport

Eth Scan For Event

Eth Get Ip Hdr Len

Eth Load Ip Packet

Eth Get Hdr Chksum

Eth Get Source Ip Address
Eth Get Dest Ip Address
Eth Arp Response

Eth Get Icmp Info

Eth Ping Response

Eth Get Udp Source Port
Eth Get Udp Dest Port
Eth Get Udp Port

Eth Set Udp Port

Eth Send Udp

Eth Load Tcp Header

Eth Get Tcp Hdr Offset
Eth Get Tcp Flags

Eth Set Tcp Data

Eth Tcp Response

MIKROELEKTRONIKA: DEVELOPMENT TOOLS -

BOoks -

COMPILERS

miqul: .

Mé{«”? ctdwk«ﬂée... MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS
Eth_Init
Prototype void Eth Init (char *addrP, char *dataP, char *ctrlp,

char pinReset, char pinIOW, char pinIOR);

Description Performs initialization of Ethernet card and library. This includes:

- Setting of control and data ports;

- Initialization of the Ethernet card (also called the Network Interface Card, or NIC);
- Retrieval and local storage of the NIC’s hardware (MAC) address;

- Putting the NIC into the LISTEN mode.

Parameter addrP is a pointer to address port, which handles the addressing lines.
Parameter dataP is pointer to data port. Parameter ctr1P is the control port. Parameter
pinReset is the reset/enable pin for the ethernet card chip (on control port). Parameter
pinIOw is the I/O Write request control pin. Parameter pinIOR is the I/O read request

control pin.
Requires As specified for the entire library (please see top of this page).
Example Eth Init (&PORTB, &PORTD, &PORTE, 2, 1, 0);

Eth_Set_Ip_Address

Prototype void Eth Set Ip Address(char ipl, char ip2, char ip3, char ip4);

Description Sets the IP address of the connected and initialized Ethernet network card. The
arguments are the IP address numbers, in IPv4 format (e.g. 127.0.0.1).

Requires This function should be called immediately after the NIC initialization (see Eth_Init).
You can change your IP address at any time, anywhere in the code.

Example // Set IP address 192.168.20.25
Eth Set Ip Address(192u, 168u, 20u, 25u);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 2@@

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Eth_Set_Inport

Prototype unsigned short Eth Inport (unsigned short address);

Returns One byte from the specified address.

Description Retrieves a byte from the specified address of the Ethernet card chip.

Requires The card (NIC) must be properly initialized. See Eth Init.

Example udp length |= Eth Inport (NIC DATA);

Eth_Scan_For_Event

Prototype unsigned Eth Scan For Event (unsigned short *next ptr);

Returns Type of the ethernet packet received. Two types are distinguished: aARp (MAC-IP
address data request) and 1P (Internet Protocol).

Description Retrieves sender’s MAC (hardware) address and type of the packet received. The
function argument is an (internal) pointer to the next data packet in RTL8019’s buffer,
and is of no particular importance to the end user.

Requires The card (NIC) must be properly initialized. See Eth_Init. Also, the function must be
called in a proper sequence, i.e. right after the card init, and IP address/UDP port init.

Example Eth Init (&PORTB, &PORTD, &PORTE, 2, 1, 0);
Eth Set Ip Address(192u, 168u, 20u, 25u);
Eth Set Udp Port (10001);
do { // Main block of every Ethernet example
event type = Eth Scan For Event (&next ptr);
if (event type) {
switch (event type) {case ARP: Arp Event(); break;
case IP : Ip Event() ;}
Eth Outport (CR, 0x22);
Eth Outport (BNDRY, next ptr);
}
} while (1);

2@2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

miqul: .

Mé{«lﬂ? ctawkzﬂée... MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Eth_Get_Ip_Hdr_Len

Prototype unsigned short Eth Get Ip Hdr Len(void);

Returns Header length of the received IP packet.

Description Returns header length of the received IP packet. Before other data based upon the IP
protocol (TCP, UDP, ICMP) can be analyzed, the sub-protocol data must be properly
loaded from the received IP packet.

Requires The card (NIC) must be properly initialized. See Eth_Init. The function must be
called in a proper sequence, i.e. immediately after determining that the packet received
is the IP packet.

Example // Receive IP Header
opt len = Eth Get Ip Hdr Len() - 20;

Eth_Load_Ip_Packet

Prototype void Eth Load Ip Packet (void);
Description Loads various IP packet data into PIC’s Ethernet variables.
Requires The card (NIC) must be properly initialized. See Eth_Init. Also, a proper sequence of

calls must be obeyed (see the Ip Event function in the supplied Ethernet example).

Example Eth Load Ip Packet();

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 2@3

MIKRODC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Eth_Get_Hdr_Chksum

Prototype void Eth Get Hdr Chksum(wvoid) ;

Description Loads and returns the header checksum of the received IP packet.

Requires The card (NIC) must be properly initialized. See Eth_Init. Also, a proper sequence of
calls must be obeyed (see the Ip Event function in the supplied Ethernet example).

Example Eth Get Hdr Chksum();

Eth_Get_Source_Ip_Address

Prototype void Eth Get Source Ip Address(void);

Description Loads and returns the IP address of the sender of the received IP packet.

Requires The card (NIC) must be properly initialized. See Eth Init. Also, a proper sequence of
calls must be obeyed (see the Ip Event function in the supplied Ethernet example).

Example Eth Get Source Ip Address();

Eth_Get_Dest_Ip_Address

Prototype void Eth Get Dest Ip Address (void);
Description Loads the IP address of the received IP packet for which the packet is designated.
Requires The card (NIC) must be properly initialized. See Eth Init. Also, a proper sequence of
calls must be obeyed (see the Ip Event function in the supplied Ethernet example).
Example Eth Get Dest Ip Address();
Cpage e

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

miqul: .

MIKROC -

Eth_Arp_Response

Prototype void Eth Arp Response (void);

Description An automated ARP response. User should simply call this function once he detects the
ARP event on the NIC.

Requires As specified for the entire library.

Example Eth Arp Response();

Eth_Get_lcmp_Info

Prototype void Eth Get Icmp Info(void);

Description Loads ICMP protocol information (from the header of the received ICMP packet) and
stores it to the PIC’s Ethernet variables.

Requires The card (NIC) must be properly initialized. See Eth Init. Also, this function must be
called in a proper sequence, and before the Eth Ping Response.

Example Eth Get Icmp Info();

Eth_Ping_Response

Prototype void Eth Ping Response (void);

Description An automated ICMP (Ping) response. User should call this function when answerring to
an ICMP/IP event.

Requires As specified for the entire library.

Example Eth Ping Response();

C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

Eth_Get_Udp_Source_Port

Prototype unsigned Eth Get Udp Source Port (void);

Returns Returns the source port (socket) of the received UDP packet.

Description The function returns the source port (socket) of the received UDP packet. After the
reception of valid IP packet is detected and its type is determined to be UDP, the UDP
packet header must be interpreted. UDP source port is the first data in the UDP header.

Requires This function must be called in a proper sequence, i.e. immediately after interpretation
of the IP packet header (at the very beginning of UDP packet header retrieval).

Example udp source port = Eth Get Udp Source Port();

Eth_Get_Udp_Dest_Port

Prototype unsigned Eth Get Udp Dest Port (wvoid);
Returns Returns the destination port of the received UDP packet.
Description The function returns the destination port of the received UDP packet. The second

information contained in the UDP packet header is the destination port (socket) to which
the packet is targeted.

Requires This function must be called in a proper sequence, i.e. immediately after calling the
Eth Get Udp Source Port function.

Example udp dest port = Eth Get Udp Dest Port();

2@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

miqul: .

Mé{«lﬂ? ctawkzﬂée... MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Eth_Get_Udp_Port

Prototype unsigned short Eth Get Udp Port (void);

Returns Returns the UDP port (socket) number that is set for the PIC’s Ethernet card.

Description The function returns the UDP port (socket) number that is set for the PIC's Ethernet
card. After the UDP port is set at the beginning of the session (Eth_Set Udp_ Port), its
number is later used to test whether the received UDP packet is targeted at the port we
are using.

Requires The network card must be properly initialized (see Eth_Init), and the UDP port
propely set (see Eth_Set Udp Port). This library currently supports working with
only one UDP port (socket) at a time.

Example if (udp_dest port == Eth Get Udp Port()) {
// Respond to action
}

Eth_Set_Udp_Port

Prototype void Eth Set Udp Port (unsigned udp port);

Description Sets up the default UDP port, which will handle user requests. The user can decide,
upon receiving the UDP packet, which port was this packet sent to, and whether it will
be handled or rejected.

Requires As specified for the entire library.

Example Eth Set Udp Port (10001);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 2@7

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Eth_Send_Udp

Prototype void Eth Send Udp (char *msg);

Description Sends the prepared UDP message (msg), of up to 16 bytes (characters).

Unlike ICMP and TCP, the UDP packets are generally not generated as a response to the
client request. UDP provides no guarantees for message delivery and sender retains no
state on UDP messages once sent onto the network. This is why UDP packets are simply
sent, instead of being a response to someone’s request.

Requires As specified for the entire library. Also, the message to be sent must be formatted as a
null-terminated string. The message length, including the trailing “0”, must not exceed
16 characters.

Example Eth Send Udp (udp_ tx message);

Eth_Load_Tcp_Header

Prototype void Eth Load Tcp Header (void);
Description Loads various TCP Header data into PIC’s Ethernet variables.
Requires This function must be called in a proper sequence, i.e. immediately after retrieving the

source and destination port (socket) of the TCP message.

Example // retrieve 'source port'
tcp source port = Eth Inport(NIC DATA) << 8;
tcp source port |= Eth Inport (NIC DATA);
// retrieve 'destination port'
tcp dest port = Eth Inport (NIC DATA) << 8;
tcp dest port |= Eth Inport (NIC DATA);

// We only respond to port 80 (HTML requests)

if (tcp dest port == 80u) {
Eth Load Tcp Header(); // retrieve TCP Header data (most of it)
Y

z@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

miqul: .

Mé{«”? ctawu«ﬂée... MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Eth_Get_Tcp_Hdr_Offset

Prototype unsigned short Eth Get Tcp Hdr Offset (void);

Returns Returns the length (or offset) of the TCP packet header in bytes.

Description The function returns the length (or offset) of the TCP packet header in bytes. Upon
receiving a valid TCP packet, its header is to be analyzed in order to respond properly
(e.g. respond to other's request, merge several packets into the message, etc.). The head-
er length is important to know in order to be able to extract the information contained in
1it.

Requires This function must be called after the Eth Load Tcp Header, since it initializes the
private variables used for this function.

Example // calculate offset (TCP header length)
tcp options = Eth Get Tcp Hdr Offset() - 20;

Eth_Get_Tcp_Flags

Prototype unsigned short Eth Get Tcp Flags (void);

Returns Returns the flags data from the header of the received TCP packet.

Description The function returns the flags data from the header of the received TCP packet. TCP
flags show various information, e.g. SYN (syncronize request), ACK (acknowledge
receipt), and similar. It is upon these flags that, for example, a proper HTTP communi-
cation is established.

Requires This function must be called after the Eth Load Tcp Header, since it initializes the
private variables used for this function.

Example flags = Eth Get Tcp Flags();

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 2@@

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Eth_Set_Tcp_Data

Prototype void Eth Set Tcp Data(const unsigned short *data);

Description Prepares data to be sent on HTTP request. This library can handle only HTTP requests,
so sending other TCP-based protocols, such as FTP, will cause an error. Note that
TCP/IP was not designed with 8-bit MCU’s in mind, so be gentle with your HTTP

requests.
Requires As specified for the entire library.
Example // Let's prepare a simple HTML page in our string:

const char httpPagel[] =
"HTTP/1.0 200 OK\nContent-type: text/html\n"
"<html>\n" "<body>\n"
"<hl>Hello world!</hl>\n"
"</body>\n" "</html>";
YV
Eth Set Tcp Data (httpPagel);
Y2

Eth_Tcp_Response

Prototype void Eth Tcp Response (void);

Description Performs user response to TCP/IP event. User specifies data to be sent, depending on the
request received (HTTP, HTTPD, FTP, etc). This is performed by the function
Eth Set Tcp Data.

Requires Hardware requirements are as specified for the entire library. Prior to using this func-
tion, user must prepare the data to be sent through TCP; see Eth _Set Tcp Data.

Example Eth Tcp Response();

2 ﬂ @ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroc .

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Library Example

Check the supplied Ethernet example in the Examples folder.

HW Connection

T1:FL1012

8| o
73|[=10

6 1

2 15
[on "1

0.1u 0.1u L 0.1u
T

T2kv T 2KV

RJ45

Alwbmmﬂm

= —wog
84
—
SHE=
oy T
es] — ¢
2 |vas RTL8019AS soo| =2 (RD3]
—or—] SD13 SD5 —0
—e] |2 US 2 E (w02
—2 |sbn1 sp3| (=2
—2] |Isp1o sp2| =8| RD1
—2—] |spe soi1| =2
—o] |sps spo| = RDO|
— = [iocstes I0CHRDY| =3— ==
—] |INT7 AEN[F=2o—
—so =] [INTE RSTDRV| F=-2>— +5V
2 |iNTs SMEMWB

|
+
2

RBO
[RB1)
[RB2
[RB3)
[RB4

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 2 ﬂ ﬂ

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

SPI Ethernet Library

The ENC28J60 is a stand-alone Ethernet controller with an industry standard
Serial Peripheral Interface (SPI™). It is designed to serve as an Ethernet network
interface for any controller equipped with SPI.

The ENC28J60 meets all of the IEEE 802.3 specifications. It incorporates a num-
ber of packet filtering schemes to limit incoming packets. It also provides an inter-
nal DMA module for fast data throughput and hardware assisted IP checksum cal-
culations. Communication with the host controller is implemented via two inter-
rupt pins and the SPI, with data rates of up to 10 Mb/s. Two dedicated pins are
used for LED link and network activity indication.

This library is designed to simplify handling of the underlying hardware
(ENC28J60). It works with any PIC with integrated SPI and more than 4 Kb ROM
memory. 38 to 40 MHz clock is recommended to get from § to 10 Mhz SPI clock,
otherwise PIC should be clocked by ENC clock output due to ENC silicon bug in
SPI hardware. if you try lower PIC clock speed, there might be board hang or miss
some requests. This library is tested with PIC16F877A@10Mhz,
PIC18F452@40Mhz.

Note: For advanced users there is a header in Uses\P16 and Uses\P18 folder
("enc28j60 _libprivate.h") with detailed description of all functions which are
implemented in SPI Ethernet Library.

Note: spT_1nit () must be called before initializing SPI Ethernet.

Library Routines

SPI Ethernet Init

SPI_Ethernet doPacket
SPI_Ethernet putByte
SPI_Ethernet getByte
SPI_Ethernet UserTCP
SPI_Ethernet UserUDP

2 ﬂ 2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

miqul: .

Mé{«lﬂ? ctawkzﬂée... MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

SPI_Ethernet_lInit

Prototype void SPI Ethernet Init (unsigned char *resetPort, unsigned char
resetBit, unsigned char *CSportPtr, unsigned char CSbit, unsigned
char *mac, unsigned char *ip, unsigned char fullDuplex);

Returns Nothing.

Description Initialize SPI & ENC controller. This function is splited into 2 parts to help linker when
coming short of memory.

resetPort - pointer to reset pin port

resetBit - reset bit number on resetPort

CSport - pointer to CS pin port

CSbit - CS bit number on CSport

mac - pointer to array of 6 char with MAC address

ip - pointer to array of 4 char with IP address

fullDuplex - either SPI Ethernet HALFDUPLEX for half duplex or
SPI Ethernet FULLDUPLEX for full duplex

Requires SPI_Init () must be called before initializing SPI Ethernet.

Example SPI Ethernet Init (&PORTC, 0, &PORTC, 1, myMacAddr, myIpAddr,
SPI Ethernet FULLDUPLEX) ;

SPI_Ethernet_doPacket

Prototype void SPI Ethernet doPacket();

Returns Nothing.

Description Process one incoming packet if available. This function is public.

Requires SPI Ethernet init must have been called before this function must be called as often as
possible by use.

Example SPI _Ethernet doPacket () ;

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 2 ﬂ 3

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

SPI_Ethernet_putByte

Prototype void SPI Ethernet putByte (unsigned char v);
Returns Nothing.
Description v - value to store

Store one byte to current EWRPT ENC location this function is public.

Requires SPI Ethernet init must have been called before calling this function.

Example SPI Ethernet putByte (0xa0l);

SPI_Ethernet_getByte

Prototype unsigned char SPI Ethernet getByte();

Returns Value of byte @ addr.

Description Get next byte from current ERDPT ENC location this function is public.

Requires SPI_Ethernet_init must have been called before calling this function.
Example b = SPI Ethernet getByte();
“TTpage e

2 ﬂ 4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroG

Méé&? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

SPI_Ethernet_UserTCP

Prototype unsigned int SPI Ethernet UserTCP (unsigned char *remoteHost,
unsigned int remotePort, unsigned int localPort, unsigned int
reglLength) ;

Returns Returns the length in bytes of the HTTP reply, or 0 if nothing to transmit.

Description This function is called by the library. The user accesses to the HTTP request by succes-
sive calls to SPI_Ethernet getByte() the user puts data in the transmit buffer by succes-
sive calls to SPI_Ethernet putByte() the function must return the length in bytes of the
HTTP reply, or 0 if nothing to transmit. If you don't need to reply to HTTP requests, just
define this function with a return(0) as single statement.

Requires SPI_Ethernet init must have been called before calling this function.

Example

SPI_Ethernet_UserUDP

Prototype unsigned int SPI Ethernet UserUDP (unsigned char *remoteHost,
unsigned int remotePort, unsigned int destPort, unsigned int
regLength) ;

Returns Returns the length in bytes of the UDP reply, or 0 if nothing to transmit.

Description This function is called by the library. The user accesses to the UDP request by succes-
sive calls to SPI_Ethernet getByte(). The user puts data in the transmit buffer by succes-
sive calls to SPI_Ethernet putByte(). The function must return the length in bytes of the
UDP reply, or 0 if nothing to transmit. If you don't need to reply to UDP requests,just
define this function with a return(0) as single statement.

Requires SPI Ethernet_init must have been called before calling this function.

Example

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 2 ﬂ 5

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

Library Example

The following example is a simple demonstration of the SPI Ethernet Library. PIC
is assigned an IP address of 192.168.20.60, and will respond to ping if connected
to a local area network.

#define SPI Ethernet HALFDUPLEX 0
#define SPI Ethernet FULLDUPLEX 1

/**

* ROM constant strings

*/
const unsigned char httpHeader[] = "HTTP/1.1 200 OK\nContent-type: " ; // HTTP header
const unsigned char httpMimeTypeHTML[] = "text/html\n\n" ; // HTML MIME type
const unsigned char httpMimeTypeScript[] = "text/plain\n\n" ; // TEXT MIME type
unsigned char httpMethod[] = "GET /";
J*

* web page, splited into 2 parts
* when coming short of ROM, fragmented data 1is handled more efficiently by linker
*
* this HTML page calls the boards to get its status, and builds itself with
javascript
*/
const char * indexPage = "<HTML><HEAD></HEAD><BODY>\
<hl>PIC + ENC28J60 Mini Web Server</hl>\
Reload\
<script src=/s></script>\
<table><tr><td valign=top><table border=1 style=\"font-size:20px ;font-family: termi-
nal ;\">\
<tr><th colspan=2>ADC</th></tr>\
<tr><td>AN2</td><td><script>document.write (AN2)</script></td></tr>\
<tr><td>AN3</td><td><script>document.write (AN3)</script></td></tr>\
</table></td><td><table border=1 style=\"font-size:20px ;font-family: terminal ;\">\
<tr><th colspan=2>PORTB</th></tr>\
<script>\
var str,i;\
str=\"\";\
for (i=0;1<8;i++)\
{ str+=\"<tr><td bgcolor=pink>BUTTON #\"+i+\"</td>\";\
1f (PORTB& (1<<i)){ str+=\"<td bgcolor=red>ON\";}\
else { str+=\"<td bgcolor=#cccccc>OFF\ ";}\
str+=\"</td></tr>\";}\
document.write (str) ;\

2 ﬂ @ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroc .

Mé{:’ﬂ? G‘cho MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS
</script>\
n .
;
const char *indexPage2 = "</table></td><td>\

<table border=1 style=\"font-size:20px ;font-family: terminal ;\">\
<tr><th colspan=3>PORTD</th></tr>\

<script>\

var str,i;\

str=\"\";\

for (1=0;1<8;1i++)\

{ str+=\"<tr><td bgcolor=yellow>LED #\"+i+\"</td>\";\

if (PORTD& (1<<i)){ str+=\"<td bgcolor=red>ON\";}\

else { str+=\"<td bgcolor=#cccccc>0OFF\";}\

str+=\"</td><td>Toggle</td></tr>\";}\
document.write (str) ;\

</script>\

</table></td></tr></table>\

This is HTTP request #<script>document.write (REQ)</script></BODY></HTML>\
// str+=\"</td><td>Toggle</td></tr>\";}\

/***********************************

* RAM variables

*/
unsigned char myMacAddr{ 6] = { 0x00, 0x14, O0xA5, 0x76, 0x19, O0x3f} ;//my MAC address
unsigned char myIpAddr] 4] = {192, 168, 20, 60} ; // my IP address
unsigned char getRequest[15] ; // HTTP request buffer
unsigned char dynal 31] ; // buffer for dynamic response
unsigned long httpCounter = 0 ; // counter of HTTP requests

/***

* functions

*/
J*

* put the constant string pointed to by s to the ENC transmit buffer
*/

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 2 ﬂ 7

- C COMPILER FOR MICROGHIP PIC MICROGCONTROLLERS W“? qu-

MIKROE - € COMPILER FOR MIGROCHIP PIG MIGROCONTROLLERS . 220207 5 0am::
unsigned int putConstString (const char *s)
{
unsigned int ctr = 0 ;
while (*s)
{
SPI Ethernet putByte (*s++) ;
ctr++ ;
}
return(ctr) ;
}
Vas
* put the string pointed to by s to the ENC transmit buffer
*/
unsigned int putString(char *s)
{
unsigned int ctr = 0 ;
while (*s)
{
SPI Ethernet putByte (*s++) ;
ctr++ ;
}
return(ctr) ;
}
Vas
* this function is called by the library
* the user accesses to the HTTP request by successive calls to
* SPI Ethernet getByte()
* the user puts data in the transmit buffer by successive calls to
* SPI Ethernet putByte()
* the function must return the length in bytes of the HTTP reply, or 0 if nothing
* to transmit
*
* if you don't need to reply to HTTP requests,
* just define this function with a return(0) as single statement
*
*/
“TTpage e

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroc .

Méé&? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

unsigned int SPI Ethernet UserTCP (unsigned char *remoteHost, unsigned int
remotePort, unsigned int localPort, unsigned int reglLength)

{

unsigned int len = 0 ; // my reply length
unsigned int i // general purpose integer
if (localPort != 80) // I listen only to web request on port 80

{

return (0) ;

}

// get 10 first bytes only of the request, the rest does not matter here
for(i = 0 ; 1 < 10 ; i++)

{

getRequest[i] = SPI Ethernet getByte() ;

}
getRequest[i] = 0 ;

if (memcmp (getRequest, httpMethod, 5)) // only GET method is supported here
{

return (0) ;

}

httpCounter++ ; // one more request done
if (getRequest[5] == 's')
// 1if request path name starts with s, store dynamic data in transmit buffer
{

// the text string replied by this request can be interpreted as javascript
// statements by browsers

len = putConstString(httpHeader) ; // HTTP header
len += putConstString(httpMimeTypeScript) ; // with text MIME type

// add AN2 value to reply

intToStr (ADC_Read(2), dyna) ;

len += putConstString("var AN2=") ;
len += putString(dyna) ;

len += putConstString(";");

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 2 ﬂ @

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W"? de-

// add AN3 value to reply
intToStr (ADC Read(3), dyna) ;

len += putConstString("var AN3=") ;
len += putString(dyna) ;

len += putConstString(";")

// add PORTB value (buttons) to reply
len += putConstString("var PORTB=")
intToStr (PORTB, dyna) ;

len += putString(dyna) ;

len += putConstString(";")

// add PORTD value (LEDs) to reply
len += putConstString("var PORTD=")
intToStr (PORTD, dyna) ;

len += putString(dyna) ;

len += putConstString(";")

// add HTTP requests counter to reply
intToStr (httpCounter, dyna) ;
len += putConstString("var REQ=") ;
len += putString(dyna) ;
len += putConstString(";")
}
else if (getRequest[5] == 't')

// 1f request path name starts with t, toggle PORTD (LED) bit number that comes after
{
unsigned char bitMask = 0 ; // for bit mask

if (isdigit (getRequest[6]))
// 1if 0 <= bit number <= 9, bits 8 & 9 does not exist but does not matter
{

bitMask = getRequest[6] - '0' ; // convert ASCII to integer
bitMask = 1 << bitMask ; // create bit mask
PORTD "= bitMask ; // toggle PORTD with xor operator

}

2@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

making ct simple... MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS
if(len == 0) // what do to by default
{
len = putConstString(httpHeader) ; // HTTP header
len += putConstString(httpMimeTypeHTML) ; // with HTML MIME type
len += putConstString(indexPage) ; // HTML page first part
len += putConstString(indexPage2) ; // HTML page second part
}
return(len) ; // return to the library with the number of bytes to transmit
}
Vas
* this function is called by the library
* the user accesses to the UDP request by successive calls to SPI Ethernet getByte()
* the user puts data in the transmit buffer by successive calls to
* SPI Ethernet putByte()
* the function must return the length in bytes of the UDP reply, or 0 if nothing to
* transmit
*
* if you don't need to reply to UDP requests,
* just define this function with a return(0) as single statement
*

*/
unsigned int SPI Ethernet UserUDP (unsigned char *remoteHost, unsigned int remotePort,
unsigned int destPort, unsigned int reglength)
{
unsigned int len ; // my reply length
unsigned char *ptr ; // pointer to the dynamic buffer

// reply is made of the remote host IP address in human readable format

byteToStr (remoteHost[0] , dyna) ; // first IP address byte
dynal[3] = '."'

byteToStr (remoteHost[1], dyna + 4) ; // second

dynal 7] = '.'

byteToStr (remoteHost[2] , dyna + 8) ; // third

dyna[11] = '.' ;

byteToStr (remoteHost[3] , dyna + 12) ; // fourth

dyna[15] = ':' ; // add separator

// then remote host port number
intToStr (remotePort, dyna + 16) ;

dynal 22] = '['
intToStr (destPort, dyna + 23) ;
dynal 29] = ']'
dynal 30] = 0 ;

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 22 ﬂ

mikroC

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W“? de-

// the total length of the request is the length of the dynamic string plus the text
// of the request
len = 30 + reglength ;
// puts the dynamic string into the transmit buffer
ptr = dyna ;
while (*ptr)
{
SPI Ethernet putByte (*ptr++) ;
t

// then puts the request string converted into upper char into the transmit buffer
while (reglength--)
{
SPI Ethernet putByte (toupper (ENC28J60 getByte()))
t

return(len) ; // back to the library with the length of the UDP reply
}
J*
* main entry
*/
void main ()
{
ADCON1 = 0x00 ; // ADC convertors will be used
PORTA = 0 ;
TRISA = Oxff ; // set PORTA as input for ADC
PORTB = 0 ;
TRISB = 0Oxff ; // set PORTB as input for buttons
PORTD = 0 ;
TRISD = 0 ; // set PORTD as output
/* starts ENC28J60 with
* reset bit on RCO
* CS bit on RCI1
* my MAC & IP address
* full duplex
*/
Spi Init(); // Initialize SPI module

SPI Ethernet Init (&PORTC, 0, &PORTC, 1, myMacAddr, myIpAddr, SPI Ethernet FULLDUPLEX);
while (1) // do forever
{
SPI Ethernet doPacket () ; // process incoming Ethernet packets

* add your stuff here if needed
* SPI Ethernet doPacket() must be called as often as possible
* otherwise packets could be lost

2@2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méém? ct simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

N\
I 1]
I 1]
I]
I
i U I
I — 1]
i (@) I
vee i 3 il
I i foe) 1]
1 vee _n 1
i——z{]eno il
3 oo ?,-, !
—
_15[RCO 1
8 Mhz 16 Arei N il
E 24
_|D|— 18 [RCS 23
L L RC3 RC4
=+ [I
I 1]
vcc
\ 4 =
T veces
& ENC28J60)
10uF
1 J 28
VCAP vee [—
A\ —2[GND LEDA]i
vee [P 3 26
~ —{] cLkouT LEDB [}—
N 4]1—3 4] — 25
12 —{|INT osc-vee [}—
L w[— 54— 24
e 1 —{| woL osc2 [}—
a[}— 3B 6 23
5 - 10 so osc1 |—
—Ilz o 38— RC5 74 22
6 9 {]si OSCGND [}
—{]2ry 9 3a[}— RC3 8 4 21 25 MHz
7 b4 8 RC4 {| sck PLL-GND [}
GND | e——— RC1 94 = 20
= {|és PLLvCce [}—
= RCO 0 o e 19
—1 RX-VCC .,|_'1s
¢——{| GND-Rx TX-GND [} R4
12 17 ps
1| TP TROUT+ [
TPIN+ TPOUT- [RS
14 15
RBIAS TX-VCC [— 51
R1 -_—
2K
vces |
R6
L1 51
FERRITE
= BEAD R7
51
12|11| RJ45
K2 A2 qp, 1
<] ot f—2
- |—2
RO+ |7
<] cr :
K1 a1 RP-

-t C4 = C3
1°| 9| I100nF I10nF

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 2@3

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Flash Memory Library

This library provides routines for accessing microcontroller Flash memory. Note
that prototypes differ for PIC16 and PIC18 families.

Note: Due to P16 family flash specifics, flash library is MCU dependent. There
are three kinds of MCU's that support flash memory operations:

1. Only flash Read operation supported. For this group of MCU's only Flash Read
function is implemented.

2. Read and Write operations are supported (write is executed as erase-and-write).
For this group of MCU's read and write functions are implemented.

3. Read, Write and Erase operations supported. For this group of MCU's read,
write and erase functions are implemented. Further more, flash memory block
has to be erased prior to writting (write operation is not executed as
erase_and write).

Please refer to datasheet before using flash library.

Library Routines

Flash Read
Flash Write
Flash Erase

Flash_Read
Prototype unsigned Flash Read(unsigned address); // for PIClé6
unsigned short Flash Read(long address); // for PICI8
Returns Returns data byte from Flash memory.
Description Reads data from the specified address in Flash memory.
Example Flash Read (0x0DO0O) ;
CTpage T

zz@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

miqul: .

Mé{«lﬂ? ctdwk«ﬂée... MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Flash_Write

Prototype // for PICIl6
void Flash Write(unsigned address, unsigned int * data);

// for PICI18
void Flash Write(long address, unsigned short *fdata);

Description Writes chunk of data to Flash memory. With PIC18, data needs to be exactly 64 bytes in
size. Keep in mind that this function erases target memory before writing Data to it.
This means that if write was unsuccessful, previous data will be lost.

Example // Write consecutive values 1in 64 consecutive locations
char toWrite[64] ;

// initialize array:
for (i = 0; 1 < 63; i++) toWritel 1] = 1i;
Flash Write (0x0D00O, toWrite);

Flash_Erase

Prototype void Flash Erase (unsigned address);

Description Erases 32 bytes memory block starting from a given address. Implemented only for
those MCU's whose flash memory does not support erase-and-write operations (refer to
datasheet for details).

Example // Erase 32 byte memory memory block, starting from address
// S0D00:

Flash Erase ($0D00);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 225

MIKROC

Library

unsigned
unsigned
unsigned
unsigned

- C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Example

The example demonstrates simple write to the flash memory for PIC18, then reads
the data and displays it on PORTB.

short i
long addr;

short dataRd;
short dataWr|

0, 3

void main ()

PORTB
TRISB
PORTC
TRISC

addr

o O O O

0x00000A30;

{

’
’
’

’

{112I3I

1
1
1

// valid for P18F452

Flash Write (addr,

addr

0x00000A30;

dataWr) ;

for

(1 = 0;

i < 64;

i++)

{

dataRd

PORTB

Flash Read(addr++);
dataRd;

Delay ms(500);

}

VA

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méut? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

12C Library

I2C full master MSSP module is available with a number of PIC MCU models.
mikroC provides library which supports the master I*C mode.

Note: Certain PICmicros with two I?°C modules, such as P18F8722, require you to
specify the module you want to use. Simply append the number 1 or 2 to a 12C.
For example, 12c2_wr () ; Also, for the sake of backward compabitility with previ-
ous compiler versions and easier code management, MCU's with multiple 12C
modules have I?C library which is identical to I2C1 (i.e. you can use I2C_Init ()
instead of 12c1_1nit () for I*C operations).

Library Routines

I2C Init

I2C Start

I2C Repeated Start
I2C Is Idle

12C Rd
I2C Wr
I2C _Stop
12C_Init
Prototype void I2C Init(long clock);
Description Initializes I2C with desired clock (refer to device data sheet for correct values in
respect with Fosc). Needs to be called before using other functions of 12C Library.
Requires Library requires MSSP module on PORTB or PORTC.
Example I2C Init (100000);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 227

MIKROD - C GOMPILER FOR MIGROCHIP PIC MICROCONTROLLERS e W.‘f.%::
12C_Start
Prototype char I2C Start (void);
Returns If there is no error, function returns 0.
Description Determines if I2C bus is free and issues START signal.
Requires I?’C must be configured before using this function. See I2C_Init.
Example I2C_Start();
12C_Repeated_Start
Prototype void I2C Repeated Start (void);
Description Issues repeated START signal.
Requires IC must be configured before using this function. See I2C_Init.
Example I2C Repeated Start();
12C_Is_lIdle
Prototype char I2C Is Idle(void);
Returns Returns 1 if I*C bus is free, otherwise returns 0.
Description Tests if I?C bus is free.
Requires I2C must be configured before using this function. See I2C_Init.
Example if (I2C Is Idle()) { ...}
CTpage T
MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

making & smple... N MIKROC - © COMPILER FOR MICROCHIP PIE MICROCONTROLLERS
12C_Rd
Prototype char I2C Rd(char ack);
Returns Returns one byte from the slave.
Description Reads one byte from the slave, and sends not acknowledge signal if parameter ack is 0,

otherwise it sends acknowledge.

Requires START signal needs to be issued in order to use this function. See 12C_Start.
Example temp = I2C Rd(0); // Read data and send not acknowledge signal
12C_Wr
Prototype char I2C Wr (char data);
Returns Returns 0 if there were no errors.
Description Sends data byte (parameter data) via I2C bus.
Requires START signal needs to be issued in order to use this function. See I12C_Start.
Example I2C Write (0xA3);
12C_Stop
Prototype void I2C Stop(void);

Description Issues STOP signal.

Requires IC must be configured before using this function. See I2C_Init.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 22@

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

Library Example

This code demonstrates use of [>C Library functions. PIC MCU is connected
(SCL, SDA pins) to 24c02 EEPROM. Program sends data to EEPROM (data is
written at address 2). Then, we read data via I2C from EEPROM and send its
value to PORTD, to check if the cycle was successful (see the figure below how to
interface 24c02 to PIC).

void main (){
PORTB = 0;
TRISB = 0;

I2C Init(100000);

I2C_Start(); // Issue I2C start signal

I2C Wr (0xA2); // Send byte via I2C (command to 24c02)
I2C Wr(2); // Send byte (address of EEPROM location)
I2C _Wr (0xFO); // Send data (data to be written)

I2C stop();

Delay ms (100);

I2C_Start(); // Issue I2C start signal

I2C Wr (0xA2); // Send byte via I2C (device address + W)
I2C Wr(2); // Send byte (data address)

I2C_Repeated Start(); // Issue I2C signal repeated start

I2C _Wr (0xA3); // Send byte (device address + R)

PORTB = I2C_Rd(0u); // Read the data (NO acknowledge)

I2C stop();

2@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

méap? ct simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

HW Connection

' T) vee vce
A 4
i] 7
E % Lo~
1 8
i] S IV T
A ple ol
[I «—4[GND SDA]i
[(@) I
I LS] g[] gD L 24c02
(]] T -
" Avee 0 I
|”%[GND T]
—14[0501 h i
— | osc2 m I
(] I
I ([l N I
T 7| 4L 1
- —|re3 RC4]
8 Mhz E %

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 2@@

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Keypad Library

mikroC provides library for working with 4x4 keypad; routines can also be used
with 4x1, 4x2, or 4x3 keypad. Check the connection scheme at the end of the
topic.

Library Routines

Keypad Init
Keypad Read
Keypad Released

Keypad_Init

Prototype void Keypad Init (char *port);

Description Initializes port to work with keypad. The function needs to be called before using other
routines of the Keypad library.

Example Keypad Init (&PORTB) ;

Keypad_Read

Prototype unsigned Keypad Read (void);
Returns 1..16, depending on the key pressed, or 0 if no key is pressed.
Description Checks if any key is pressed. Function returns 1 to 16, depending on the key pressed, or

0 if no key is pressed.

Requires Port needs to be appropriately initialized; see Keypad Init.
Example kp = Keypad_Read();
Cpage e

2@2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikro!: .

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Keypad_Released

Prototype unsigned Keypad Released(void) ;
Returns 1..16, depending on the key.
Description Call to Keypad_Released is a blocking call: function waits until any key is pressed

and released. When released, function returns 1 to 16, depending on the key.

Requires Port needs to be appropriately initialized; see Keypad Init.

Example kp = Keypad Released();

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 233

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

Library Example

The following code can be used for testing the keypad. It supports keypads with 1 to 4 rows and 1
to 4 columns. The code returned by the keypad functions (1..16) is transformed into ASCII codes
[0..9,A..F]. In addition, a small single-byte counter displays the total number of keys pressed in
the second LCD row.

unsigned short kp, cnt;
char txt[5] ;

void main () {
cnt = 0;
Keypad Init (&PORTC) ;
Led _Init (&PORTB) ; // Initialize LCD on PORTC
Lcd Cmd (LCD_CLEAR) ; // Clear display
Lcd Cmd (LCD_CURSOR_OFF) ; // Cursor off

Lcd Out (1, 1, "Key :")
Led Out (2, 1, "Times:");

do {
kp = 0;

//--— Wait for key to be pressed

do
//--- un-comment one of the keypad reading functions
kp = Keypad Released();
//kp = Keypad Read();

while (!'kp);

cnt++;
//--— prepare value for output
if (kp > 10)
kp += 54;
else
kp += 47;
//--- print it on LCD

Led Chr(l, 10, kp);
WordToStr (cnt, txt);
Led Out (2, 10, txt)

’

} while (1);
y S/~

2@4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méap? ct simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

HW Connection

d

-
O
o)

|: RB7:|—
[RB6]38— 1 2 3 A
|: RBSJT > o T_'-H > T_'-H
: - e R g o B D
vce I: RB2:| zj o—4 o4 = 04
{ P REs]733 7 8 9 Tc
|: O RBO]* o9 o o9 oo T_'_H
E — % * 0 # D
1 m S B _'-;— 5o
e I T T
Il 13 4" m i " KEYPAD
——, 1] osct N 1 \O ax4 o)
— | osc2 U'l I
N I
I
I
I
I
I

|
o o Y o Y e |

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 235

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

LCD Library (4-bit interface)

mikroC provides a library for communicating with commonly used LCD (4-bit
interface). Figures showing HW connection of PIC and LCD are given at the end
of the chapter.

Note: Be sure to designate port with LCD as output, before using any of the fol-
lowing library functions.

Library Routines

Lcd Config
Led Init
Lcd Out
Lcd Out Cp
Lcd Chr
Lcd Chr Cp
Lcd Cmd
Lcd_Config
Prototype void Lcd Config(char *port, char RS, char EN, char WR, char D7,

char D6, char D5, char D4);

Description Initializes LCD at port with pin settings you specify: parameters RS, EN, WR, D7 .. D4
need to be a combination of values 0-7 (e.g. 3,6,0,7,2,1,4).

Examp]e Lcd Config (&PORTD,1,2,0,3,5,4,6);

23@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

___ MIKROD - € COMPILER FOR MICROCHIP PIC MICROCONTROLLERS
Lcd_Init
Prototype void Lcd Init (char *port);
Description Initializes LCD at port with default pin settings (see the connection scheme at the end
of the chapter): D7 -> PORT.7, D6 -> PORT.6, D5 -> PORT.5, D4 -> PORT 4,
E ->PORT.3, RS -> PORT.2.
Example Led TInit (&PORTB) ;
Lcd_Out
Prototype void Lcd Out (char row, char col, char *text);
Description Prints text on LCD at specified row and column (parameter row and col). Both string
variables and literals can be passed as text.
Requires Port with LCD must be initialized. See Lcd _Config or Led Init.
Example Lcd Out (1, 3, "Hello!"); // Print "Hello!" at line 1, char 3
Lcd_Out_Cp
Prototype void Lcd Out Cp(char *text);
Description Prints text on LCD at current cursor position. Both string variables and literals can be
passed as text.
Requires Port with LCD must be initialized. See Lcd_Config or Led_Init.
Example Lcd Out Cp("Here!"); // Print "Here!" at current cursor position
5 page
MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS

MIKROC - © CompPier Fog MicRacHe PIC wioroconTRaneRe, ... making it simple...
Lcd_Chr
Prototype void Lcd Chr (char row, char col, char character);
Description Prints character on LCD at specified row and column (parameters row and col).

Both variables and literals can be passed as character.

Requires Port with LCD must be initialized. See Lcd_Config or Led_Init.

Example Led Out (2, 3, 'i'); // Print 'i' at line 2, char 3
Lcd_Chr_Cp

Prototype void Lcd Chr Cp(char character);

Description Prints character on LCD at current cursor position. Both variables and literals can be

passed as character.

Requires Port with LCD must be initialized. See Lcd_Config or Led_Init.

Example Led Out Cp('e'); // Print 'e' at current cursor position
Lcd_Cmd

Prototype void Lcd Cmd(char command) ;

Description Sends command to LCD. You can pass one of the predefined constants to the function.

The complete list of available commands is shown on the following page.

Requires Port with LCD must be initialized. See Lcd_Config or Led_Init.
Example Lcd Cmd(Led Clear); // Clear LCD display
Cpage e

z@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééoﬂ? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

LCD Commands

LCD Command Purpose
LCD_FIRST ROW Move cursor to 1st row
LCD_SECOND_ROW Move cursor to 2nd row
LCD_THIRD ROW Move cursor to 3rd row
LCD_FOURTH ROW Move cursor to 4th row
LCD_CLEAR Clear display

Return cursor to home position, returns a shifted display to original posi-

LCD_RETURN_ HOME) . .
- - tion. Display data RAM is unaffected.

LCD CURSOR OFF Turn off cursor
LCD _UNDERLINE ON Underline cursor on
LCD_BLINK CURSOR ON Blink cursor on

LCD_MOVE_CURSOR_LEFT Move cursor left without changing display data RAM

LCD_MOVE_CURSOR RIGHT | Move cursor right without changing display data RAM

LCD_TURN_ON Turn LCD display on

LCD_TURN OFF Turn LCD display off

LCD SHIFT LEFT Shift display left without changing display data RAM
LCD SHIFT RIGHT Shift display right without changing display data RAM

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 23@

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W"? de-

Library Example (default pin settings)

char *text = "mikroElektronika";

void main () {

TRISB = 0; // PORTB is output
Lcd _Init (&PORTB) ; // Initialize LCD connected to PORTB
Lcd _Cmd (Led CLEAR) ; // Clear display
Lcd Cmd (Led _CURSOR_OFF) ; // Turn cursor off
Lecd Out (1, 1, text); // Print text to LCD, 2nd row, 1st column
Yy //~!
- Vo T-

24@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

- C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

MIKRODC

Ll—ﬂl
| | A

—

o
o
>

Ll

| | I'LI | |

cay
eaqy
202]
SOY
90y
LOY
vay
Say
9ay
L0y
SSA
aaa
ogy
Lay
[4:}-]
eay
vay
say
28y
PAS |

Lay
(1]a}-]
20}]
[40}-]
[%0)-]
(1o}]

¢3S0
20570

SSA
aaa
z3d
13y
03y
SV
v
A 2-]
(A 4-]
(3°2-]
ovy

10N

| NN NN S S— S— -

| NN NN) S S) S NN NN NN) S S — — \.L|

»

P (MG
uswysnlpy

jsequon

vd

Hardware Connection

mikroC

(%]
o
>

page

221

COMPILERS

BOoOKS -

DEVELOPMENT TOOLS -

MIKROELEKTRONIKA!

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

LCD Custom Library (4-bit interface)

mikroC provides a library for communicating with commonly used LCD (4-bit
interface). Figures showing custom HW connection of PIC and LCD are given at
the end of the chapter.

Library Routines

Lcd Custom Config
Lcd Custom Out
Lcd Custom Out Cp
Lcd Custom Chr
Lcd Custom Chr Cp
Lcd Custom Cmd

Lcd_Custom_Config

Prototype void Lcd Custom Config(char * data port, char D7, char D6, char
D5, char D4, char * ctrl port, char RS, char WR, char EN);

Description Initializes LCD data port and control port with pin settings you specify.
Example Lcd Custom Config (&PORTD, 3,2,1,0, &PORTB, 2,3,4) ;
“TTpage e

242 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

miqul: .

Mé{«lﬂ? ctdwk«ﬂée... MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Lcd_Custom_Out

Prototype void Lcd Custom Out (char row, char col, char *text);

Description Prints text on LCD at specified row and column (parameter row and col). Both string
variables and literals can be passed as text.

Requires Port with LCD must be initialized. See Lcd_Config.

Example Lcd Custom Out (1, 3, "Hello!");//Print "Hello!" at line 1, char 3

Lcd_Custom_Out_Cp

Prototype void Lcd Custom Out Cp(char *text);

Description Prints text on LCD at current cursor position. Both string variables and literals can be
passed as text.

Requires Port with LCD must be initialized. See Lcd_Config.
Example Lcd Custom Out Cp("Here!"); // Print "Here!" at current cursor
position

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 243

MIKRODC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Lcd_Custom_Chr

Prototype void Lcd Custom Chr (char row, char col, char character);

Description Prints character on LCD at specified row and column (parameters row and col).
Both variables and literals can be passed as character.

Requires Port with LCD must be initialized. See Lcd_Config.

Example Lcd Custom Chr(2, 3, 'i'); // Print 'i' at line 2, char 3

Lcd_Custom_Chr_Cp

Prototype void Lcd Custom Chr Cp(char character);

Description Prints character on LCD at current cursor position. Both variables and literals can be
passed as character.

Requires Port with LCD must be initialized. See Lcd_Config.

Example Lcd Custom Out Cp('e'); // Print 'e' at current cursor position

Lcd_Custom_Cmd

Prototype void Lcd Custom Cmd (char command);
Description Sends command to LCD. You can pass one of the predefined constants to the function.
The complete list of available commands is shown on the following page.
Requires Port with LCD must be initialized. See Lcd_Config.
Example Lcd Custom Cmd(Led Clear); // Clear LCD display
“TTpage e

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééoﬂ? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

LCD Commands

LCD Command Purpose
LCD_FIRST ROW Move cursor to 1st row
LCD_SECOND_ROW Move cursor to 2nd row
LCD_THIRD ROW Move cursor to 3rd row
LCD_FOURTH ROW Move cursor to 4th row
LCD_CLEAR Clear display

Return cursor to home position, returns a shifted display to original posi-

LCD_RETURN_ HOME) . .
- - tion. Display data RAM is unaffected.

LCD CURSOR OFF Turn off cursor
LCD _UNDERLINE ON Underline cursor on
LCD_BLINK CURSOR ON Blink cursor on

LCD_MOVE_CURSOR_LEFT Move cursor left without changing display data RAM

LCD_MOVE_CURSOR RIGHT | Move cursor right without changing display data RAM

LCD_TURN_ON Turn LCD display on

LCD_TURN OFF Turn LCD display off

LCD SHIFT LEFT Shift display left without changing display data RAM
LCD SHIFT RIGHT Shift display right without changing display data RAM

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 245

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W"? de-

Library Example (default pin settings)

char *text = "mikroElektronika";

void main () {

TRISB = 0; // PORTB is output

Lcd Custom Config (&PORTB,7,6,5,4,&PORTB,3,0,2);// Initialize LCD connected to
PORTB

Lcd _Custom Cmd (Led CLEAR) ; // Clear display
Lcd _Custom Cmd (Led CURSOR OFF) ; // Turn cursor off
Lcd Custom Out (1, 1, text); // Print text to LCD, 2nd row, 1st col-
umn
A
Cpage

24@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

- C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

MIKRODC

Ll—ﬂl
| | A

—

o
o
>

Ll

| | I'LI | |

cay
eaqy
202]
SOY
90y
LOY
vay
Say
9ay
L0y
SSA
aaa
ogy
Lay
[4:}-]
eay
vay
say
28y
PAS |

Lay
(1]a}-]
20}]
[40}-]
[%0)-]
(1o}]

¢3S0
20570

SSA
aaa
z3d
13y
03y
SV
v
A 2-]
(A 4-]
(3°2-]
ovy

10N

| NN NN S S— S— -

| NN NN) S S) S NN NN NN) S S — — \.L|

»

P (MG
uswysnlpy

jsequon

vd

Hardware Connection

mikroC

(%]
o
>

page

2N

COMPILERS

BOoOKS -

DEVELOPMENT TOOLS -

MIKROELEKTRONIKA!

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

LCDS8 Library (8-bit interface)

mikroC provides a library for communicating with commonly used 8-bit interface
LCD (with Hitachi HD44780 controller). Figures showing HW connection of PIC
and LCD are given at the end of the chapter.

Library Routines

Lcd8 Config
Lcd8 Init
Lcd8 Out
Lcd8 Out Cp
Lcd8 Chr
Lcd8 Chr Cp
Lcd8 Cmd

Lcd8_Config

Prototype void Lcd8 Config(char *ctrlport, char *dataport, char RS,
char EN, char WR, char D7, char D6, char D5, char D4, char D3,
char D2, char D1, char DO0);

Description Initializes LCD at Control port (ctrlport) and Data port (dataport) with pin settings
you specify: Parameters RS, EN, and WR need to be in range 0—7; Parameters D7 .. DO
need to be a combination of values 0-7 (e.g. 3,6,5,0,7,2,1,4).

Example Lcd8 Config (&PORTC, &PORTD,0,1,2,6,5,4,3,7,1,2,0);

24 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroG

Méé&? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS
Lcd8_lInit
Prototype void Lcd8 Init (char *ctrlport, char *dataport);

Description Initializes LCD at Control port (ctrlport) and Data port (dataport) with default pin
settings (see the connection scheme at the end of the chapter):

E -> ctrlport.3, RS -> ctrlport.2, R/W -> ctrlport.0, D7 -> dataport.7, D6 -> dataport.6,
D5 -> dataport.5, D4 -> dataport.4, D3 -> dataport.3, D2 -> dataport.2, D1 -> dataport.1,
DO -> dataport.0

Example Lcd8 Init (&PORTB, &PORTC) ;
Lcd8_Out
Prototype void Lcd8 Out (char row, char col, char *text);
Description Prints text on LCD at specified row and column (parameter row and col). Both string

variables and literals can be passed as text.

Requires Ports with LCD must be initialized. See Lcd8 Config or Lcd8 Init.

Example Lcd8 Out(l, 3, "Hello!"); // Print "Hello!" at line 1, char 3
Lcd8_Out_Cp

Prototype void Lcd8 Out Cp(char *text);

Description Prints text on LCD at current cursor position. Both string variables and literals can be

passed as text.

Requires Ports with LCD must be initialized. See Lcd8 Config or Lcd8 Init.

Example Lcd8 Out Cp("Here!"); // Print "Here!" at current cursor position

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 24@

MIKROE - € BaMPILER FOR MICRAOCHIP PIC MICROCONTROLLERS . W 98 simple. ..
Lcd8_Chr
Prototype void Lcd8 Chr(char row, char col, char character);
Description Prints character on LCD at specified row and column (parameters row and col).

Both variables and literals can be passed as character.

Requires Ports with LCD must be initialized. See Lcd8_Config or Lcd8 Init.
Example Lcd8 Out (2, 3, 'i'); // Print 'i' at line 2, char 3
Lcd8 Chr_Cp
Prototype void Lcd8 Chr Cp(char character);
Description Prints character on LCD at current cursor position. Both variables and literals can be

passed as character.

Requires Ports with LCD must be initialized. See Lcd8_Config or Lcd8 Init.

Example Lcd8 Out Cp('e'); // Print 'e' at current cursor position
Lcd8_Cmd

Prototype void Lcd8 Cmd(char command) ;

Description Sends command to LCD. You can pass one of the predefined constants to the function.

The complete list of available commands is on the page 186.

Requires Ports with LCD must be initialized. See Lcd8 Config or Lcd8 Init.
Example Lcd8 Cmd(Led Clear); // Clear LCD display
Cpage e

25@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikrn(: .

Méém? ct simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Library Example (default pin settings)

char *text = "mikroElektronika";

void main () {

TRISB = 0; // PORTB is output

TRISC = 0; // PORTC is output

Lcd8 Init (&PORTB, &PORTC) ; // Initialize LCD at PORTB and PORTC
Lcd8 Cmd (Led _CURSOR_OFF) ; // Turn off cursor

Lcd8 Out (1, 1, text); // Print text on LCD

Hardware Connection

[mecr - RB7[]
[] Rao RBG[] E |
[l ra RB5]—R’W—-
[raz rea[] RS
[]ras RrB3[]
vce [l raa RB2[] vee
[ras RrB1[]
[l reo rBo[]
[ret VDD
Contrast
P3[] Adjustment [] re2 =S]?_L
K|] voo Ro7[] =
i [vss Ros [}
osc1 RD5[] DS
[N osc2 RD4]D“——
= EFEEFEEEFEEEER |4’—Enco re7[]
L 8MhZ []geq res|]
[Ire2 res|]
oo [res rcal] i,
pom i L0 RD3][)27
|—[RD1 rRO2[————

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 25ﬂ

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

GLCD Library

mikroC provides a library for drawing and writing on Graphic LCD. These rou-
tines work with commonly used GLCD 128x64, and work only with the PIC18
family.

Library Routines

Basic routines:

Glcd Init

Glcd _Set Side
Glcd Set Page
Glcd Set X

Glcd Read Data
Glcd Write Data

Advanced routines:

Glcd Fill

Glcd Dot

Glcd Line
Glcd V Line
Glcd H Line
Glcd Rectangle
Glcd Box

Glcd Circle
Glcd Set Font
Glcd Write Char
Glcd Write Text
Glcd Image

252 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroG

Méé&? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS
Glcd_Init
Prototype void Glcd Init (unsigned char *ctrl port, char csl, char cs2, char

rs, char rw, char rst, char en, unsigned char *data port);

Description Initializes GLCD at lower byte of data port with pin settings you specify. Parameters
csl, cs2, rs, rw, rst, and en can be pins of any available port. This function needs to
be called befored using other routines of GLCD library.

Example Gled Init (PORTB, PORTC, 3, 5, 7, 1, 2);

Glcd_Set_Side

Prototype void Glcd Set Side (unsigned short x);

Description Selects side of GLCD, left or right. Parameter x specifies the side: values from 0 to 63
specify the left side, and values higher than 64 specify the right side. Use the functions
Glcd Set Side, Glcd Set X, and Glcd Set Page to specify an exact position on
GLCD. Then, you can use Glcd Write Data or Glcd Read Data on that location.

Requires GLCD needs to be initialized. See G1cd_Init.

Example Glcd Select Side(0);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 253

MIKRODC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Glcd_Set_Page

Prototype void Glcd Set Page (unsigned short page);
Description Selects page of GLCD, technically a line on display; parameter page can be 0..7.
Requires GLCD needs to be initialized. See G1cd_Init.
Example Glcd Set Page(5);
Glcd_Set_X
Prototype void Glcd Set X (unsigned short x pos);
Description Positions to x dots from the left border of GLCD within the given page.
Requires GLCD needs to be initialized. See Glcd_Init.
Example Glcd Set X(25);

Glcd_Read_Data

Prototype unsigned short Glcd Read Data(wvoid);
Returns One word from the GLCD memory.
Description Reads data from from the current location of GLCD memory. Use the functions
Glcd _Set Side, Glcd Set X, and Glcd Set Page to specify an exact position on
GLCD. Then you can use Glcd _Write Data or Glcd Read Data on that location.
Requires Reads data from from the current location of GLCD memory.
Example tmp = Glcd Read Data();
CTpage T

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroG

MIKROC -

Glcd_Write_Data

C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Prototype void Glcd Write Data (unsigned short data);
Description Writes data to the current location in GLCD memory and moves to the next location.
Requires GLCD needs to be initialized. See G1cd_Init.
Example Glcd Write Data(data);
Gled_Fill
Prototype void Glcd Fill (unsigned short pattern);
Description Fills the GLCD memory with byte pattern. To clear the GLCD screen, use
Glcd Fill (0); to fill the screen completely, use Glcd Fill (SFF).
Requires GLCD needs to be initialized. See Glcd_Init.
Example Glcd Fill(0); // Clear screen
Glcd_Dot
Prototype void Glcd Dot (unsigned short x, unsigned short y, char color);
Description Draws a dot on the GLCD at coordinates (x, vy).Parameter color determines the dot
state: O clears dot, 1 puts a dot, and 2 inverts dot state.
Requires GLCD needs to be initialized. See G1cd_Init.
Example Glcd Dot (0, 0, 2); // Invert the dot in the upper left corner

MIKROELEKTRONIKA: DEVELOPMENT TOOLS -

BOoOKS - COMPILERS

MIKRODC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Glcd_Line
Prototype void Glcd Line(int x1, int yl, int x2, int y2, char color);
Description Draws a line on the GLCD from (x1, y1) to (x2, y2).Parameter color determines
the dot state: 0 draws an empty line (clear dots), 1 draws a full line (put dots), and 2
draws a “smart” line (invert each dot).
Requires GLCD needs to be initialized. See Glcd_Init.
Example Glcd Line (0, 63, 50, 0, 2);
Glcd_V_Line
Prototype void Glcd V Line (unsigned short yl, unsigned short y2, unsigned
short x, char color);
Description Similar to GLcd Line, draws a vertical line on the GLCD from (x, y1) to
(x, y2).
Requires GLCD needs to be initialized. See Glcd Init.
Examp]e Glcd V Line(0, 63, 0, 1);

Glcd_H_Line

Prototype void Glcd H Line(unsigned short x1, unsigned short x2, unsigned
short y, char color);
Description Similar to GLcd Line, draws a horizontal line on the GLCD from (x1, y) to
(%2, y).
Requires GLCD needs to be initialized. See Glcd_Init.
Examp]e Glcd H Line (O, 127, 0, 1);
Cpage e

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroG

Méé&? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Glcd_Rectangle

Prototype void Glcd Rectangle (unsigned short x1, unsigned short yl,
unsigned short x2, unsigned short y2, char color);

Description Draws a rectangle on the GLCD. Parameters (x1, y1) set the upper left corner,

(x2, y2) set the bottom right corner. Parameter color defines the border: 0 draws an
empty border (clear dots), 1 draws a solid border (put dots), and 2 draws a “smart” bor-
der (invert each dot).

Requires GLCD needs to be initialized. See Glcd_Init.
Example Glcd Rectangle (10, 0, 30, 35, 1);
Glcd_Box
Prototype void Glcd Box(unsigned short x1, unsigned short yl, unsigned

short x2, unsigned short y2, char color);

Description Draws a box on the GLCD. Parameters (x1, y1) set the upper left corner, (x2, y2)
set the bottom right corner. Parameter color defines the fill: 0 draws a white box (clear
dots), 1 draws a full box (put dots), and 2 draws an inverted box (invert each dot).

Requires GLCD needs to be initialized. See G1cd_Init.

Example Glcd Box (10, 0, 30, 35, 1);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 257

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Glcd_Circle

Prototype void Glcd Circle(int x, int y, int radius, char color);

Description Draws a circle on the GLCD, centered at (x, y) with radius. Parameter color defines the
circle line: 0 draws an empty line (clear dots), 1 draws a solid line (put dots), and 2
draws a “smart” line (invert each dot).

Requires GLCD needs to be initialized. See Glcd_Init.

Example Glcd Circle (63, 31, 25, 2);

Glcd_Set_Font

Prototype void Glcd Set Font (const char *font, unsigned short font width,
unsigned short font height, unsigned font offset);

Description Sets font for routines Glcd Write Char and Glcd Write Text. Parameter font
needs to formatted in an array of byte.

Parameters font width and font height specify the width and height of characters
in dots. Font width should not exceed 128 dots, and font height shouldn’t exceed 8 dots.

Parameter font offset determines the ASCII character from which the supplied font
starts. Demo fonts supplied with the library have an offset of 32, which means that they
start with space.

You can create your own fonts by following the guidelines given in file
“GLcd Fonts.c”. This file contains the default fonts for GLCD, and is located in your
installation folder, “Extra Examples” > “GLCD”.

Requires GLCD needs to be initialized. See G1cd_Init.

Example // Use the custom 5x8 font "myfont" which starts with space (32):
Glcd Set Font (myfont 5x8, 5, 8, 32);

z% MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroG

Mééoﬂ? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Glcd_Write_Char

Prototype void Glcd Write Char (unsigned short character, unsigned short x,
unsigned short page, char color);

Description Prints character at page (one of 8 GLCD lines, 0..7), x dots away from the left bor-
der of display. Parameter color defines the “fill”: O prints a “white” letter (clear dots),
1 prints a solid letter (put dots), and 2 prints a “smart” letter (invert each dot).

Requires GLCD needs to be initialized. See Glcd_Init.

Example Glcd Write Char('C', 0, 0, 1);

Glcd_Write_Text

Prototype void Glcd Write Text (char *text, unsigned short x, unsigned short
page, unsigned short color);

Description Prints text at page (one of 8 GLCD lines, 0..7), x dots away from the left border of
display. Parameter color defines the “fill”: O prints a “white” letters (clear dots), 1
prints solid letters (put dots), and 2 prints “smart” letters (invert each dot).

Requires GLCD needs to be initialized. See Glcd Init.

Example Glcd Write Text ("Hello world!", 0, 0, 1);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 25@

MIKROD - C GOMPILER FOR MIGROCHIP PIC MICROCONTROLLERS e making & slmple...
Glcd_Image
Prototype void Glcd Image (const char *image);
Description Displays bitmap image on the GLCD. Parameter image should be formatted as an array

of integers. Use the mikroC’s integrated Bitmap-to-LCD editor (menu option Tools >
BMP2LCD) to convert image to a constant array suitable for display on GLCD.

Requires GLCD needs to be initialized. See Glcd_Init.
Example Glcd Image (my_ image);
Cpage e

2@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroC

Library Example

MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

The following drawing demo tests advanced routines of GLCD library.

unsigned short j,

void main () {

Glcd Init (PORTB, 2, 0O, 3, 5, 7, 1, PORTD);

// Set font for displaying text
Glcd Set Font (QFontSystem5x8, 5, 8, 32);

do {
// Draw circles
Glcd Fill(0); // Clear screen
Glcd Write Text ("Circles", 0, 0, 1);
j o= 4;
while (§ < 31) {
Glcd Circle(63, 31, 3, 2);
g o+= 4;
}
Delay ms (4000);

// Draw boxes
Glcd Fill(0); // Clear screen
Glcd Write Text ("Rectangles", 0, 0, 1);
j = 0;
while (j < 31) {
Gled Box(j, O, j + 20, J + 25, 2);
g o+= 4;
}
Delay ms (4000);

// Draw Lines
Glcd Fill(0); // Clear screen
Glcd Write Text ("Lines", 0, 0, 1);
for (j = 0; J < 16; j++) {
k = j*4 + 3;
Glcd Line(0, 0, 127, k, 2);
}
for (3 = 0; j < 31; j++) {
k = %4 + 3;
Glcd Line(0, 63, k, 0, 2);
}
Delay ms (4000);
} while (1);

y /!

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS

mikroC
COMPILER FOR ROC PIC MICROCONTROLLERS dt

MIKROC

Hardware Connection

vcc

@ n) ®) » N ©) v) ¢ o) o
| w X|O| o ol ol ala ala
N © O S ™ o o A ¢ Kk © v ¥ N © B T O© N
o 00 mMa ¢ Q0 aQa O 0 O aa
XX o oSS KEEEREREREEEE R
« 2w OO
[) M ¢ 0 o = O T N M ©
O < 2 < W WwWao®nw oo oooo0ana
|En:§n:§§n:n:n:n:>>oon:n:zmn:m
| SN SN N) N S SN) NN) SN S S S— m—) — | S — m— m—
(=3
N
H
il H =
Q
o
>

vcc

—
g
® E
3 g3
S €3 S
3% °
A 4
— 1
T
%

page
2@2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroc .

Méé&? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

T6963C Graphic LCD Library

mikroC provides a library for drawing and writing on Toshiba T6963C Graphic
LCD (changeable size).

Library Routines

T6963C Init

T6963C writeData
T6963C writeCommand
T6963C_setPtr
T6963C_ waitReady
T6963C fill

T6963C _dot

T6963C write char
T6963C write text
T6963C line
T6963C_rectangle
T6963C box

T6963C circle
T6963C_image
T6963C_sprite
T6963C set cursor
T6963C clearBit
T6963C_setBit
T6963C negBit
T6963C displayGrPanel
T6963C displayTxtPanel
T6963C_setGrPanel
T6963C_setTxtPanel
T6963C panelFill
T6963C grFill
T6963C txtFill
T6963C cursor height
T6963C _graphics
T6963C text
T6963C_cursor
T6963C cursor blink
T6963C Init 240x128
T6963C Init 240x64

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 2@3

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

T6963C_init

Prototype void T6963C init (unsigned int w, unsigned int h, unsigned int
fntW, unsigned int *data, unsigned int *cntrl, unsigned int
bitwr, unsigned int bitrd, unsigned int bitcd, unsigned int
bitreset);

Description Initalizes the Graphic Lcd controller. This function must be called before all T6963C
Library Routines.

width - Number of horizontal (x) pixels in the display.

height - Number of vertical (y) pixels in the display.

fntW - Font width, number of pixels in a text character, must be set accordingly to the
hardware.

data - Address of the port on which the Data Bus is connected.

cntrl - Address of the port on which the Control Bus is connected.

wr - |WR line bit number in the *cntrl port.

rd - |RD line bit number in the *cntrl port.

cd - !CD line bit number in the *cntrl port.

rst - IRST line bit number in the *cntrl port.

Display RAM :

The library doesn't know the amount of available RAM.

The library cuts the RAM into panels : a complete panel is one graphics panel followed
by a text panel, The programer has to know his hardware to know how much panel he

has.
Requires Nothing.
Example T6963C_init (240, 128, 8, &PORTF, &PORTD, 5, 7, 6, 4) ;
/*
* init display for 240 pixel width and 128 pixel height
* 8 bits character width
* data bus on PORTF
* control bus on PORTD
* bit 5 is !WR
* bit 7 is !RD
* bit 6 is C!D
* bit 4 is RST
*/

z@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroG

Méé&? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

T6963C_writeData

Prototype void T6963C writeData(unsigned char data);

Description Routine that writes data to T6963C controller.

Requires Ports must be initialized. See T6963C_init.

Example T6963C writeData (AddrL) ;

T6963C_writeCommand

Prototype void T6963C writeCommand (unsigned char data);
Description Routine that writes command to T6963C controller.

Requires Ports must be initialized. See T6963C_init.

Example T6963C_writeCommand (T6963C_CURSOR POINTER SET) ;

T6963C_setPtr

Prototype void T6963C setPtr (unsigned int addr, unsigned char t);
Description This routine sets the memory pointer p for command c.

Requires Ports must be initialized. See T6963C_init.

Example T6963C_writeCommand (T6963C_CURSOR POINTER SET) ;

T6963C_waitReady

Prototype void T6963C waitReady (void);

Description This routine pools the status byte, and loops until ready.
Requires Ports must be initialized. See T6963C_init.

Example T6963C waitReady ()

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

T6963C_fill

Prototype void T6963C fill (unsigned char data, unsigned int start, unsigned
int len);
Description This routine fills length with bytes to controller memory from start address.
Requires Ports must be initialized. See T6963C_init.
Example T6963C fill (0x33,0x00FF, 0x000F) ;
T6963C_dot
Prototype void T6963C dot(int x, int y, unsigned char color);
Description This sets current text work panel. It writes string str row x line y. mode =

T6963C_ROM_MODE_[OR|EXOR|AND].

Requires Ports must be initialized. See T6963C_init.

Example T6963C dot (x0, y0, pcolor);

T6963C_write_char

Prototype void T6963C dot(int x, int y, unsigned char color);

Description This routine sets current text work panel.
It writes char ¢ row x line y.
mode = T6963C ROM_MODE [OR|EXOR|AND]

Requires Ports must be initialized. See T6963C_init.

Example T6963C write char ('A',22,23,AND);

T6963C_write_text

Prototype void T6963C write text (unsigned char *str, unsigned char x,
unsigned char y, unsigned char mode) ;

Description This sets current text work panel.

It writes string str row X line y.
mode = T6963C ROM_MODE [OR|EXOR|AND]

Requires Ports must be initialized. See T6963C_init.

Example T6963C write text (" GLCD LIBRARY DEMO, WELCOME !", 0, 0,
T6963C_ROM MODE_XOR) ;

2@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroG

Méé&? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

T6963C_line

Prototype void T6963C line(int px0, int py0, int pxl, int pyl, unsigned
char pcolor);

Description This routine current graphic work panel.
It's draw a line from (x0, y0) to (x1, y1).
pcolor = T6963C [WHITE[BLACK]

Requires Ports must be initialized. See T6963C_init.

Example T6963C line (0, 0, 239, 127, T6963C WHITE);

T6963C_rectangle

Prototype void T6963C rectangle(int x0, int y0, int x1, int yl, unsigned
char pcolor);

Description It sets current graphic work panel.
It draws the border of the rectangle (x0, y0)-(x1, y1).
pcolor = T6963C [WHITE[BLACK].

Requires Ports must be initialized. See T6963C_init.

Example T6963C rectangle (20, 20, 219, 107, T6963C WHITE);

T6963C_box

Prototype void T6963C box(int x0, int y0, int x1, int yl, unsigned char
pcolor) ;

Description This routine sets current graphic work panel.
It draws a solid box in the rectangle (x0, y0)-(x1, y1).
pcolor = T6963C [WHITE[BLACK].

Requires Ports must be initialized. See T6963C_init.

Example T6963C box (0, 119, 239, 127, T6963C WHITE);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS -

BOoOKS - COMPILERS

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

T6963C_circle

Prototype void T6963C circle(int x, int y, long r, unsigned char pcolor);

Description This routine sets current graphic work panel.
It draws a circle, center is (X, y), diameter is r.
pcolor = T6963C [WHITE[BLACK]

Requires Ports must be initialized. See T6963C_init.

Example T6963C circle (120, 64, 110, T6963C WHITE);

T6963C_image

Prototype void T6963C image (const char *pic);

Description This routine sets current graphic work panel :

It fills graphic area with picture pointer by MCU.

MCU must fit the display geometry.

For example : for a 240x128 display, MCU must be an array of (240/8)*128 = 3840

bytes .
Requires Ports must be initialized. See T6963C_init.
Example T6963C_image (mc) ;

T6963C_sprite

Prototype void T6963C sprite(unsigned char px, unsigned char py, const char
*pic, unsigned char sx, unsigned char sy);

Description This routine sets current graphic work panel.

It fills graphic rectangle area (px, py)-(px + sx, py + sy) witch picture pointed by MCU.
Sx and sy must be the size of the picture.

MCU must be an array of sx*sy bytes.

Requires Ports must be initialized. See T6963C_init.
Example T6963C_sprite(76, 4, einstein, 88, 119); // draw a sprite
Cpage

z@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

miqul: .

MIKROC -

T6963C_set_cursor

C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Prototype void T6963C set cursor (unsigned char x, unsigned char y);
Description This routine sets cursor row x line y.

Requires Ports must be initialized. See T6963C_init.

Example T6963C_set cursor(cposx, cposy);

T6963C_clearBit

Prototype void T6963C clearBit (char b);
Description Clear control bit.

Requires Ports must be initialized. See T6963C_init.
Example T6963C_clearBit (b);

T6963C_setBit

Prototype void T6963C setBit (char b);
Description Set control bit.
Requires Ports must be initialized. See T6963C_init.
Example T6963C setBit (b);

T6963C_negBit
Prototype void T6963C negBit (char b);
Description Neg control bit.
Requires Ports must be initialized. See T6963C_init.
Example T6963C negBit (b);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS

MIKROG - G CaMPILER FOR MICROCHIP Pl E‘_’:‘l‘E'EE'_EE'E‘_TFE'_'-l-_E_"_E___________________________W_éf_%:
T6963C_displayGrPanel
Prototype void T6963C displayGrPanel (unsigned int n);
Description Display graphic panel number n.
Requires GLCD needs to be initialized, see T6963C_init.
Example T6963C displayGrPanel (n);
T6963C_displayTxtPanel
Prototype void T6963C displayTxtPanel (unsigned int n);
Description Display text panel number n.
Requires GLCD needs to be initialized, see T6963C_init.
Example T6963C displayTxtPanel (n);
T6963C_setGrPanel
Prototype void T6963C setGrPanel (unsigned int n);
Description Compute graphic start address for panel number n.
Requires Ports must be initialized. See T6963C_init.
Example T6963C _setGrPanel (n);
T6963C_setTxtPanel
Prototype void T6963C setTxtPanel (unsigned int n);
Description Compute text start address for panel number n.
Requires Ports must be initialized. See T6963C_init.
Example T6963C_setTxtPanel (n);
CTpage T
MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroG

Méé&? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

T6963C_panelFill

Prototype void T6963C panelFill (unsigned int v);

Description Fill full #n panel with v bitmap (0 to clear).

Requires Ports must be initialized. See T6963C_init.

Example T6963C panelFill(v);

T6963C_grFill

Prototype void T6963C grFill (unsigned int v);

Description Fill graphic #n panel with v bitmap (0 to clear).

Requires Ports must be initialized. See T6963C_init.

Example T6963C_grFill (v);

T6963C_txtFill

Prototype void T6963C txtFill (unsigned int v);

Description Fill text #n panel with char v + 32 (0 to clear).

Requires Ports must be initialized. See T6963C_init.

Example T6963C txtFill (v);

T6963C_cursor_height

Prototype void T6963C cursor height (unsigned int n);
Description Set cursor size.

Requires Ports must be initialized. See T6963C_init.

Example T6963C_cursor height (n);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

T6963C_graphics

Prototype void T6963C graphics (unsigned int n);

Description Set graphics on/off.

Requires GLCD needs to be initialized, see T6963C_init.

Example T6963C_graphics (1) ;

T6963C_text

Prototype void T6963C text (unsigned int n);
Description Set text on/off.

Requires GLCD needs to be initialized, see T6963C_init.
Example T6963C_text(l);

T6963C_cursor

Prototype void T6963C cursor (unsigned int n);
Description Set cursor on/off.

Requires Ports must be initialized. See T6963C_init.
Example T6963C cursor (1) ;

T6963C_cursor_blink

Prototype void T6963C cursor blink(unsigned int n);
Description Set cursor blink on/off.
Requires Ports must be initialized. See T6963C_init.
Example T6963C cursor blink(0);
CTpage T

272 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroG

Mééoﬂ? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

T6963C_Init_240x128

Prototype procedure T6963C Init 240x128;

Description Initialize T6963C based GLCD (240x128 pixels) with default settings for mE GLCD's.

Example T6963C Init 240x128;

T6963C_Init_240x64

Prototype procedure T6963C Init 240x64;

Description Initialize T6963C based GLCD (240x64 pixels) with default settings for mE GLCD's.

Example T6963C_Init 240x64;

Library Example

The following drawing demo tests advanced routines of T6963C GLCD library.

#include "T6963C.h"

Vs
* bitmap pictures stored in ROM
*/

extern const char mc[] ;
extern const char einstein[]
/*
* initial PWM duty cycle for contrast power supply
*/
unsigned char PWM duty = 200

’

’

void main (void)

{

unsigned char panel ; // current panel

unsigned int i // general purpose register
unsigned char curs ; // cursor visibility
unsigned int cposx, cposy ; // cursor x-y position
TRISC = 0 ; // port C is output only
PORTC = 0b00000000 ; // chip enable, reverse on, 8x8 font

//continues. ..

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W"? de-

//continued. ..

/
init display for 240 pixel width and 128 pixel height
8 bits character width

data bus on PORTD

control bus on PORTC

bit 3 is !WR

bit 1 is !RD

bit 1 is C!D

bit 5 is RST

%% ok % ok % ok % %k

*/
T6963C_Init 240x128();
//T6963C init (240, 128, 8, &PORTD, &PORTIC, 3, 2, 1, 5) ;
/*

* enable both graphics and text display at the same time
*/
T6963C graphics(1l) ;
T6963C text(l) ;

panel = 0 ;

i=20;

curs = 0 ;

cposx = cposy = 0 ;

Vs
* text messages
*/
T6963C_write text (" GLCD LIBRARY DEMO, WELCOME !", 0, O,
T6963C_ROM MODE XOR) ;
T6963C_Write_text(" EINSTEIN WOULD HAVE LIKED mC", 0, 15,
T6963C_ROM MODE XOR) ;

J*
* cursor
*/
T6963C cursor height(8) ; // 8 pixel height
T6963C_set cursor (0, 0) ; // move cursor to top left
T6963C_cursor (0) ; // cursor off
J*
* draw rectangles
*/

T6963C rectangle(0, 0, 239, 127, T6963C WHITE) ;

T6963C rectangle (20, 20, 219, 107, T6963C WHITE) ;
T6963C rectangle (40, 40, 199, 87, T6963C WHITE) ;
T6963C rectangle (60, 60, 179, 67, T6963C WHITE) ;

//continues...

274 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

MEWZ: ________________ MIKROC - C COMPILER FOR MICROCHIFP PIC MICROCONTROLLERS
//continued. ..
J*
* draw a cross
*/
T6963C line (0, 0, 239, 127, T6963C WHITE) ;
T6963C line (0, 127, 239, 0, T6963C WHITE) ;

Vs
* draw solid boxes
*/
T6963C box (0, 0, 239, 8, T6963C WHITE) ;
T6963C box (0, 119, 239, 127, T6963C WHITE) ;

Vs
* draw circles
*/
T6963C circle (120, 64, 10, T6963C WHITE) ;
T6963C circle (120, 64, 30, T6963C WHITE) ;
T6963C circle (120, 64, 50, T6963C WHITE) ;
T6963C_circle (120, 64, 70, T6963C WHITE) ;
T6963C_circle (120, 64, 90, T6963C WHITE) ;
T6963C circle (120, 64, 110, T6963C WHITE) ;
T6963C circle (120, 64, 130, T6963C WHITE) ;

T6963C sprite(76, 4, einstein, 88, 119) ;
// draw a sprite

T6963C_setGrPanel (1) ; // select other graphic panel

T6963C_image (mc) ;
// fill the graphic screen with a picture

for (;;)
{

Vs
* if RB1 is pressed, toggle the display between
graphic panel 0 and graphic 1
*/
if (PORTB & 0b00000010)
{
panel++ ;
panel &= 1 ;
T6963C displayGrPanel (panel) ;
Delay ms(300) ;
}

//continues...

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 275

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W"? an'
//continued. ..
J*
* if RB2 is pressed, display only graphic panel
*/

else if (PORTB & 0b00000100)
{
T6963C graphics(1l) ;
T6963C text (0) ;
Delay ms(300) ;
}

Vs
* if RB3 1is pressed, display only text panel
*/
else if (PORTB & 0b00001000)
{
T6963C graphics(0) ;
T6963C text(l) ;
Delay ms(300) ;
}

Vs
* if RB4 is pressed, display text and graphic
panels
*/
else if (PORTB & 0b00010000)
{
T6963C graphics(1l) ;
T6963C text (1) ;
Delay ms(300) ;
}

Vs
* if RB5 is pressed, change cursor

*/

else if (PORTB & 0b00100000)
{
curs++ ;
if (curs == 3) curs = 0
switch (curs)

//continues...

27@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

//continued. ..

MIKROELEKTRONIKA: DEVELOPMENT TOOLS -

if (cposy ==

- C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

MIKRODC

J*
* move cursor,
*/

cposx++ ;

if (cposx == T6963C txtCols)

{
cposx = 0 ;

cposy++ ;
T6963C_grHeight / T6963C_CHARACTER HEIGHT)

{
cposy = 0 ;
}

even 1f not visible

}

T6963C set cursor (cposx, cposy) ;

Delay ms(100) ;
}

BOoOKS - COMPILERS 277

MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W &t simple

Hardware Connection

1~ 0
I J
I J
i]
!
« 1 O ¢
[i
e e
%[osm .h RD5 '7:: gj
—————] m
8 Mhz N
Il
=
Contrast
Adjustment
P1 = |
10K
L 3
vccC
vccC
R1
50

FEEFFEEFRFREFFEFRFETE

Toshiba T6963C Graphic LCD (240x128)

2? MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méut? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Manchester Code Library

mikroC provides a library for handling Manchester coded signals. Manchester
code is a code in which data and clock signals are combined to form a single self-
synchronizing data stream; each encoded bit contains a transition at the midpoint
of a bit period, the direction of transition determines whether the bitisa 0 or a 1;
second half is the true bit value and the first half is the complement of the true bit
value (as shown in the figure below).

Manchester RF_Send_Byte format

St1|St2|Ctr|B7 |B6|B5|B4 | B3| B2|B1|B0

Bi-phase coding

1 0

2.4ms Example of transmission

Notes: Manchester receive routines are blocking calls (Man Receive Config,
Man Receive Init,Man Receive). This means that PIC will wait until the
task is performed (e.g. byte is received, synchronization achieved, etc). Routines
for receiving are limited to a baud rate scope from 340 ~ 560 bps.

Library Routines

Man Receive Config
Man Receive Init
Man Receive

Man_ Send Config
Man Send Init

Man Send

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 27@

MIKRODC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Man_Receive_Config

Prototype void Man Receive Config(char *port, char rxpin);

Description The function prepares PIC for receiving signal. You need to specify the port and
rxpin (0-7) of input signal. In case of multiple errors on reception, you should call
Man Receive Init once again to enable synchronization.

Example Man Receive Config (&PORTD, 6);

Man_Receive_Init

Prototype void Man Receive Init (char *port);

Description The function prepares PIC for receiving signal. You need to specify the port; rxpin is
pin 6 by default. In case of multiple errors on reception, you should call
Man Receive Init once again to enable synchronization.

Example Man Receive Init (&PORTD) ;

Man_Receive

Prototype void Man Receive (char *error);
Returns Returns one byte from signal.
Description Function extracts one byte from signal. If signal format does not match the expected,
error flag will be set to 255.
Requires To use this function, you must first prepare the PIC for receiving. See
Man Receive Config or Man Receive Init.
Example temp = Man Receive (error);
if (error) { /* error handling */ }
Cpage e

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS -

COMPILERS

miqul: .

Mé{«”? ctawu«ﬂée... MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Man_Send_Config

Prototype void Man Send Config(char *port, char txpin);

Description The function prepares PIC for sending signal. You need to specify port and txpin
(0-7) for outgoing signal. Baud rate is const 500 bps.

Example Man Send Config (&PORTD, O0);

Man_Send_Init

Prototype void Man Receive Init (char *port);

Description The function prepares PIC for sending signal. You need to specify port for outgoing
signal; txpin is pin 0 by default. Baud rate is const 500 bps.

Example Man Send Init (&PORTD);
Man_Send
Prototype void Man Send(unsigned short data);
Description Sends one byte (data).
Requires To use this function, you must first prepare the PIC for sending. See

Man Send Config or Man Send Init.

Example unsigned short msg;

Man Send (msg) ;

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 2@

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W“? de-

Library Example

unsigned short error, ErrorCount, IdleCount, temp, LetterCount;

void main () {

ErrorCount = 0;
TRISC = 0; // Error indicator
PORTC = 0;
Man Receive Config (&PORTD, 6); // Synchronize receiver
Led_Init (&PORTB) ; // Initialize LCD on PORTB
while (1) { // Endless loop
IdleCount = O0; // Reset 1idle counter
do {
temp = Man Receive (error); // Attempt byte receive
if (error)
ErrorCount++
else
PORTC = O0;
if (ErrorCount > 20) { // If there are too many errors
ErrorCount = 0; // syncronize the receiver again
PORTC = O0xAA; // Indicate error
Man Receive Init (&PORTD) ; // Synchronize receiver
}
IdleCount++;
if (IdleCount > 18) { // If nothing received after some time
IdleCount = 0; // try to synchronize again
Man Receive Init (&PORTD) ; // Synchronize receiver
}
} while (temp != 0x0B); // End of message marker
if (error != 255) { // If no error then write the message

Led Cmd (LCD _CLEAR) ;
LetterCount = 0;
while (LetterCount < 17) { // Message 1s 16 chars long
LetterCount++;
temp = Man Receive(error);
if (error != 255)
Lcd Chr Cp (temp)
else {
ErrorCount++; break;

}

temp = Man Receive (error);
if (temp != 0x0E)
ErrorCount++;
} // end if
} // end while
y S/~
- Vo T-

22 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méap? ct simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Hardware Connection

d

Transmitter RF E %
module i i
{ Il
vce E 'U %
{ — Il
i (@) I
Antenna [- Il
{ Il
vcc :; vce il“il I
_——1|enp Il
i[zsm .h I
14—[osc2 U" I
8 Mhz E N %
VCC
bt i
=,)
A RT4 i "l %
GND

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 2@

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W"? an'

Receiver RF
module

d

Antenna

<
(2]
(2}

Ararararar

1|
alalala
,_lewm-
rarara

¢Gv4810Id

VvVCC
GND
RR4 0SscC1
Receiver RF [°S°2
module 8 Mhz i
O
< 4
L [
-
i [RD1
- A
= vCcC

24 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Multi Media Card Library

mikroC provides a library for accessing data on Multi Media Card via SPI
communication. This library supports Secure Digital (SD) flash memory card stan-
dard also.

Notes:

- Library works with PIC18 family only;

- Library functions create and read files from the root directory only;

- Library functions populate both FAT1 and FAT?2 tables when writing to files, but
the file data is being read from the FAT1 table only; i.e. there is no recovery if
FAT1 table is corrupted.

- Since version 5.0.0.3, library can cope with media that have the Master Boot
Record (MBR) in sector 0. It reads the necessary information from it, and jumps
to the first available primary logical partition. For more information on MBR,
physical and logiacl drives, primary/secondary partitions and partition tables,
please consult other resources, e.g. Wikipedia and similar.

Note: spi Init Advanced (MASTER OSC_DIV16, DATA SAMPLE MIDDLE,
CLK_IDLE LOW, LOW 2 HIGH); must be called before initializing Mmc Init.

Library Routines

Mmc Init

Mmc Read Sector
Mmc Write Sector
Mmc Read Cid
Mmc Read Csd

Mmc Fat Init

Mmc Fat Assign

Mmc Fat Reset

Mmc Fat Rewrite

Mmc Fat Append

Mmc Fat Read

Mmc Fat Write

Mmc Set File Date

Mmc Fat Delete

Mmc Fat Get File Date
Mmc Fat Get File Size
Mmc Fat Get Swap File

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 25

MIKRODC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Mmc_|Init

Prototype unsigned short Mmc Init (char *port, char pin);

Returns Returns 0 if read was successful, or 1 if an error occurred.

Description Initializes MMC with chip select pin being given by the parameters port and pin; com-
munication port and pins are designated by the hardware SPI settings for the respective
MCU.Function returns 0 if MMC card is present and successfully initialized, otherwise
returns 1.Mmc_Init needs to be called before using other functions of this library.

Requires Spi Init Advanced (MASTER OSC DIV16, DATA SAMPLE MIDDLE,
CLK_IDLE LOW, LOW 2 HIGH); must be called before calling Mmc Init.

Example Spi Init Advanced (MASTER OSC DIV16, DATA SAMPLE MIDDLE,
CLK_IDLE LOW, LOW 2 HIGH);
while (Mmc Init (&PORTC,2)) ; // Loop until MMC is initialized

Mmc_Read_Sector

Prototype unsigned short Mmc Read Sector (unsigned long sector, char *data);

Returns Returns 0 if read was successful, or 1 if an error occurred.

Description Function reads one sector (512 bytes) from MMC card at sector address sector. Read
data is stored in the array data. Function returns 0 if read was successful, or 1 if an
error occurred.

Requires Library needs to be initialized, see Mmc_Init.

Example error = Mmc Read Sector (sector, data);

Mmc_Write_Sector

Prototype unsigned short Mmc Write Sector (unsigned long sector,char *data);
Returns Returns 0 if write was successful; returns 1 if there was an error in sending write com-
mand; returns 2 if there was an error in writing.
Description Function writes 512 bytes of data to MMC card at sector address sector. Function
returns 0 if write was successful, or 1 if there was an error in sending write command,
or 2 if there was an error in writing.
Requires Library needs to be initialized, see Mmc_Init.
Example error = Mmc Write Sector(sector, data);
Cpage e

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

miqul: .

Mé{«lﬂ? ctawkzﬂée... MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Mmc_Read_Cid

Prototype unsigned short Mmc Read Cid(unsigned short *data for registers);
Returns Returns 0 if read was successful, or 1 if an error occurred.
Description Function reads CID register and returns 16 bytes of content into

data for registers.

Requires Library needs to be initialized, see Mmc_Init.

Example error = Mmc_ Read Cid(data);

Mmc_Read_Csd

Prototype unsigned short Mmc Read Csd(unsigned short *data for registers);
Returns Returns 0 if read was successful, or 1 if an error occurred.
Description Function reads CSD register and returns 16 bytes of content into

data for registers.

Requires Library needs to be initialized, see Mmc_Init.

Example error = Mmc Read Csd(data);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 27

MIKROG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Mmc_Fat_lInit

Prototype unsigned short Mmc Fat Init (unsigned short *port, unsigned short
pin);
Returns Returns 0 if initialization is successful, 1 if boot sector was not found and 255 if card

was not detected.

Description Initializes MMC/SD cards for FAT routines; CS line for communication is given
through the port and pin parameters.

This function needs to be called before using other functions of MMC FAT library.

Requires Spi_ Init Advanced (MASTER OSC _DIV16, DATA SAMPLE MIDDLE,
CLK_IDLE LOW, LOW 2 HIGH); must be called before calling Mmc Fat Init.

Example Spi Init Advanced (MASTER OSC DIV16, DATA SAMPLE MIDDLE,
CLK IDLE LOW, LOW727HIGH);

// Loop until MMC FAT is initialized at RCZ2

while (Mmc Fat Init (&PORTC, 2)) ;

Mmc_Fat_Assign

Prototype void Mmc Fat Assign(char *filename);

Description This routine designates (“assigns”) the file we’ll be working with. Function looks for the
file specified by the filename in the root directory. If the file is found, routine will ini-
tialize it by getting its start sector, size, etc. If the file is not found, an empty file will be
created with the given name. The filename must be 8 + 3 characters in uppercase.

Requires Library needs to be initialized; see Mmc_Fat Init.

Example // Assign the file "EXAMPLE1l.TXT" in the root directory of MMC.
// If the file is not found, routine will create one.
Mmc Fat Assign ("EXAMPLEITXT");

2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

miqul: .

MIKROC -

Mmc_Fat_Reset

Prototype void Mmc Fat Reset (unsigned long *size);

Description Function resets the file pointer (moves it to the start of the file) of the assigned file, so
that the file can be read. Parameter size stores the size of the assigned file, in bytes.

Requires Library needs to be initialized; see Mmc_Fat Init.

Example Mmc Fat Reset(&filesize);

Mmc_Fat_Rewrite

Prototype void Mmc Fat Rewrite (void);

Description Function resets the file pointer and clears the assigned file, so that new data can be writ-
ten into the file.

Requires Library needs to be initialized; see Mmc_Fat Init.

Example Mmc Fat Rewrite();

Mmc_Fat_Append

Prototype void Mmc Fat Append (void);

Description The function moves the file pointer to the end of the assigned file, so that data can be
appended to the file.

Requires Library needs to be initialized; see Mmc_Fat Init.

Example Mmc_Fat_Append() ;

C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 2@

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

Mmc_Fat_Read

Prototype void Mmc Fat Read(unsigned short *data);

Description Function reads the byte at which the file pointer points to and stores data into parameter
data. The file pointer automatically increments with each call of Mmc Fat Read.

Requires File pointer must be initialized; see Mmc_Fat Reset.

Example Mmc Fat Read(&mydata);

Mmc_Fat_Write

Prototype void Mmc Fat Write(char *fdata, unsigned data len);

Description Function writes a chunk of data len bytes (fdata) to the currently assigned file, at
the position of the file pointer.

Requires File pointer must be initialized; see Mmc_Fat Append or Mmc_Fat Rewrite.

Example Mmc Fat Write(txt, 21);
Mmc Fat Write("Hello\nworld", 1);

Mmc_Set_File_Date

Prototype void Mmc_ Set File Date (unsigned year, char month, char day,
char hours, char min, char sec);

Description Writes system timestamp to a file. Use this routine before each writing to the file; other-
wise, file will be appended a random timestamp.

Requires File pointer must be initialized; see Mmc_Fat Append or Mmc_Fat Rewrite.

Example // April 1lst 2005, 18:07:00
Mmc Set File Date (2005, 4, 1, 18, 7, 0);

2@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

miqul: .

MIKROC -

Mmc_Fat_Delete

Prototype void Mmc Fat Delete();
Description Deletes file from MMC.
Requires Ports must be initialized for FAT operations with MMC.
See Mmc_Fat_Init. File must be assigned. See Mmc_Fat Assign.
Example Mmc Fat Delete;

Mmc_Fat_Get_File_Date

Prototype void Mmc_ fat Get File Date (unsigned int *year, unsigned short
*month, unsigned short *day, unsigned short *hours, unsigned
short *mins);

Description Reads time attributes of file.You can read file year, month, day. hours, mins, seconds.

Requires Ports must be initialized for FAT operations with MMC.

See Mmc_Fat_Init.
File must be assigned.
See Mmc_Fat Assign.
Example Mmc Fat Get File Date(year, month, day, hours, mins);

Mmc_Fat_Get_File_Size

Prototype unsigned long Mmc fat Get File Size();
Description This function returns size of file in bytes.
Requires Ports must be initialized for FAT operations with MMC.
See Mmc_Fat_Init.
File must be assigned. See Mmc_Fat Assign.
Example Mmc Fat Get File Size;

C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS

MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W xW

Mmc_Fat_Get_Swap_File

Prototype unsigned long Mmc Fat Get Swap File (unsigned long sectors cnt);

Returns No. of start sector for the newly created swap file, if swap file was created; otherwise,
the function returns zero.

Description This function is used to create a swap file on the MMC/SD media. It accepts as sec-
tors_cnt argument the number of consecutive sectors that user wants the swap file to
have. During its execution, the function searches for the available consecutive sectors,
their number being specified by the sectors_cnt argument. If there is such space on the
media, the swap file named MIKROSWP.SYS is created, and that space is designated
(in FAT tables) to it. The attributes of this file are: system, archive and hidden, in order
to distinct it from other files. If a file named MIKROSWP.SYS already exists on the
media, this function deletes it upon creating the new one.

The purpose of the swap file is to make reading and writing to MMC/SD media as fast
as possible, by using the Mmc Read Sector() and Mmc_Write Sector() functions
directly, without potentially damaging the FAT system. Swap file can be considered as a
"window" on the media where user can freely write/read the data, in any way (s)he
wants to. Its main purpose in mikroC's library is to be used for fast data acquisition;
when the time-critical acquisition has finished, the data can be re-written into a "nor-
mal" file, and formatted in the most suitable way.

Requires Ports must be initialized for FAT operations with MMC.
See Mmc_Fat Init.

Example //Tries to create a swap file, whose size will be at least 1000
//sectors.

//If it succeeds, it sends the No. of start sector over USART
void M Create Swap File() {

size = Mmc Fat Get Swap File(1000);

if (size) {

Usart Write (OxAA)
Usart Write 51ze))
Usart Write (size));

Usart Write (Highest (size));

(
(L
(H
Usart_Write(ngher(51ze))-
(
Usart Write (0xAA);

Y/~

2@2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikro!: .

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Library Example

The following code tests MMC library routines. First, we fill the buffer with 512 “M” characters
and write it to sector 56; then we repeat the sequence with character “E” at sector 56. Finally, we
read the sectors 55 and 56 to check if the write was successful.

unsigned 1i;

unsigned short tmp;
unsigned short datal 512] ;
void main() {

Usart Init(9600);

Spi Init Advanced (MASTER OSC DIV16, DATA SAMPLE MIDDLE, CLK IDLE LOW,LOW 2 HIGH);
// Initialize SPI

// Wait until MMC is initialized
while (Mmc Init (&PORTC, 2)) ;

// Fill the buffer with the 'M' character
for (i = 0; 1 <= 511; i++) datal 1] = "M";

// Write it to MMC card, sector 55
tmp = Mmc Write Sector (55, data);

// Fill the buffer with the 'E' character
for (i = 0; 1 <= 511; i++) datal 1] = "E";

// Write it to MMC card, sector 56
tmp = Mmc Write Sector (56, data);

// Read from sector 55
tmp = Mmc Read Sector (55, data);

// Send 512 bytes from buffer to USART
if (tmp == 0)
for (i = 0; i < 512; i++) Usart Write(datal i]);

// Read from sector 56
tmp = Mmc Read Sector (56, data);

// Send 512 bytes from buffer to USART

if (tmp == 0)
for (i = 0; i < 512; i++) Usart Write(datal i]);

Y/

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 2@3

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

Library Example

The following program tests MMC FAT routines. It creates 5 different files in the root of MMC
card, and fills them with some data. You can check the file dates which should be different.

char FAT ERROR[20] = "FAT16 not found";
char file contents[50] = "XX MMC/SD FAT16 library by Anton Rieckert";
char filename[14] = "MIKROOOXTXT"; // File names

unsigned short tmp, character, loop;
long i, size;

void main () {
PORTB = 0;
TRISB = 0;

Usart Init(19200); // Set up USART for reading the files
Spi Init Advanced (MASTER OSC DIV16, DATA SAMPLE MIDDLE, CLK IDLE LOW,LOW 2 HIGH);
// Initialize SPI
if (!Mmc Fat Init (&PORTC, 2)) { // Try to find the FAT
tmp = 0;
while (FAT ERROR[tmp])
Usart Write (FAT ERROR[tmp++]);

}
for (loop = 1; loop <= 5; loop++) { // We want 5 files on our MMC card

filename[7] = loop + 64; // Set number 1, 2, 3, 4 or 5

Mmc Fat Assign(&filename,1); // If file not found, create new file
Mmc_Fat Rewrite(); // Clear the file, start with new data
file contents[0] = loop / 10 + 48;

file contents[1] = loop % 10 + 48;

Mmc Fat Write(file contents, 41); // Write data to the assigned file
Mmc_ Fat Append(); // Add more data to file

Mmc Fat Write(file contents, 41); // Write data to file
Delay ms (200);
}
// Now if we want to add more data to those same files
for (loop = 1; loop <= 5; loop++) {
filename[7] = loop + 64;
Mmc Fat Assign(&filename, 1); // Assign a file
Mmc Fat Append();
Mmc Fat Set File Date(2005,6,21,10,1lo0p,0);
Mmc Fat Write(" for mikroElektronika 2005\r\n", 30);
Mmc Fat Append();
Mmc Fat Write(file contents, 41);
Mmc_ Fat Reset (&size); // To read file, returns file size
for (i = 1; 1 <= size; 1i++) { // Write whole file to USART
Mmc Fat Read (&character);
Usart Write(character);
}
Delay ms (200);

2@4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

méap? ct simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Hardware Connection

1 ~
1 1
1 1
E]
o B
vce _
[l O Il SPI-MISO
[- J MMC-CS#
1 [vee (@) % SPI-MOSI
:z_l 2221 E % — R13 H] R15 R17 vees
— | 3 Mhz i[osca u.l 0 2K2 2K2[] 2K2 Y
ron| | N H
T 1_31 7:[[rez ol = , MMC/SD
i] Q?&é@?&ig e CARD

(T1111])
1234567

MMC

Back view

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 2@5

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

OneWire Library

OneWire library provides routines for communication via OneWire bus, for exam-
ple with DS1820 digital thermometer. This is a Master/Slave protocol, and all the
cabling required is a single wire. Because of the hardware configuration it uses
(single pullup and open collector drivers), it allows for the slaves even to get their
power supply from that line.

Some basic characteristics of this protocol are:

- single master system,

- low cost,

- low transfer rates (up to 16 kbps),

- fairly long distances (up to 300 meters),
- small data transfer packages.

Each OneWire device also has a unique 64-bit registration number (8-bit device
type, 48-bit serial number and 8-bit CRC), so multiple slaves can co-exist on the
same bus.

Note that oscillator frequency Fosc needs to be at least 4MHz in order to use the
routines with Dallas digital thermometers.

Library Routines

Ow_Reset
Ow_Read
Ow _Write

2@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

W & slmple... b MIKROC - © COMPILER FOR MICROCHIP PIE MICROCONTROLLERS

Ow_Reset

Prototype char Ow Reset (char *port, char pin);

Returns Returns 0 if DS1820 is present, 1 if not present.

Description Issues OneWire reset signal for DS1820. Parameters port and pin specify the location

of DS1820.

Requires Works with Dallas DS1820 temperature sensor only.

Example Ow_Reset (&PORTA, 5); // reset DS1820 connected to the RA5 pin
Ow_Read

Prototype char Ow Read(char *port, char pin);

Returns Data read from an external device over the OneWire bus.

Description Reads one byte of data via the OneWire bus.

Example tmp = Ow_Read (&PORTA, 5);

Ow_Write
Prototype void Ow Write(char *port, char pin, char par);
Description Writes one byte of data (argument par) via OneWire bus.
Example Ow Write (&PORTA, 5, 0xCC);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 2@7

MIKROC

- C COMPILER FOR MICROGHIP PIC MICROGCONTROLLERS W“? qu-

Library Example

unsigned temp;
unsigned short Jj;

void Display Temperature (unsigned int temp) {

/...

}

void main () {
ADCON1 = OxFF;

PORTA = O0OxFF;
TRISA = 0x0F;
PORTB = 0y
TRISB = 0;

// Configure RA5 pin as digital I/0
// PORTA is input

// PORTB 1is output

// Initialize LCD on PORTB and prepare for output

do {

}

OW Reset
OW Write
OW Write
Delay us

&PORTA, 5) ;
&PORTA, 5, 0xCC) ;
&PORTA, 5, 0x44) ;
120);

OW Reset
OW Write
OW Write
Delay ms

&PORTA, 5) ;
&PORTA, 5, 0xCC) ;
&PORTA, 5, 0xXBE) ;
400) ;

j = OW_Read (&PORTA, 5) ;
temp = OW Read (&PORTA,S);
temp <<= 8; temp += 7;
Display Temperature (temp);
Delay ms(500);

while (1);

y /!

// Onewire reset signal
// Issue command SKIP ROM
// Issue command CONVERT T

// Issue command SKIP ROM
// Issue command READ SCRATCHPAD

// Get temperature LSB

// Get temperature MSB

// Form the result

// Format and display result on LCD

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

méap? ct simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Hardware Connection

d

125 C

Ararararar

-50 C vcc

vccC

5

<
(2]
(2}

R10
10K

rr

vcc
GND
0scC1
0sc2

-
N

)

=
S

8 Mhz

i T

T
O
L 2
|_||_||_|l_||_|l_||—|_|
(JL JCL JL JT JC JL JL JL JL JC JL JL JL JT JL JT JTL T _J1T 1T

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 2@@

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

PS/2 Library

mikroC provides a library for communicating with common PS/2 keyboard.The
library does not utilize interrupts for data retrieval, and requires oscillator clock to
be 6MHz and above.

Library Routines

Ps2 Init
Ps2 Config
Ps2 Key Read

Ps2_Init

Prototype void Ps2 Init (unsigned short *port);

Description Initializes port for work with PS/2 keyboard, with default pin settings. Port pin O is
Data line, and port pin 1 is Clock line.

You need to call either Ps2_Init or Ps2 Config before using other routines of PS/2

library.
Requires Both Data and Clock lines need to be in pull-up mode.
Ps2_Config
Prototype void Ps2 Config(char *port, char clock, char data);
Description Initializes port for work with PS/2 keyboard, with custom pin settings. Parameters

data and clock specify pins of port for Data line and Clock line, respectively. bata
and clock need to be in range 0..7 and cannot point to the same pin.

You need to call either Ps2_Init or Ps2 Config before using other routines of PS/2

library.
Requires Both Data and Clock lines need to be in pull-up mode.
Example Ps2 Config (&PORTB, 2, 3);

@@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroG

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Ps2_Key_ Read

Prototype char Ps2 Key Read(char *value, char *special, char *pressed);
Returns Returns 1 if reading of a key from the keyboard was successful, otherwise 0.
Description The function retrieves information about key pressed.

Parameter value holds the value of the key pressed. For characters, numerals, punctua-
tion marks, and space, value will store the appropriate ASCII value. Routine “recog-
nizes” the function of Shift and Caps Lock, and behaves appropriately.

Parameter special is a flag for special function keys (F1, Enter, Esc, etc). If key
pressed is one of these, special will be set to 1, otherwise 0.

Parameter pressed is set to 1 if the key is pressed, and 0 if released.

Requires PS/2 keyboard needs to be initialized; see Ps2 Init or Ps2 Config.
Example // Press Enter to continue:
do {
if (Ps2 Key Read(&value, &special, &pressed)) {
if ((value == 13) && (special == 1)) break;

}
} while (1);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @@ﬂ

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W“? de-

Library Example

This simple example reads values of keys pressed on PS/2 keyboard and sends them via USART.

unsigned short keydata, special, down;

void main () {
CMCON = 0x07; // Disable analog comparators (comment this for PICI18)
INTCON = O; // Disable all interrupts
Ps2 Init (&PORTA); // Init PS/2 Keyboard on PORTA
Delay ms (100); // Wait for keyboard to finish

do {
if (Ps2 Key Read(&keydata, é&special, &down)) {

if (down && (keydata == 16)) { // Backspace
// ...do something with a backspace...

}

else if (down && (keydata == 13)) {// Enter
Usart Write(13);

}

else if (down && !special && keydata) {
Usart Write (keydata);

}

Delay ms(10); // debounce
} while (1);
}y //~!
- Vo T-

@@2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

PWM Library

CCP module is available with a number of PICmicros. mikroC provides library
which simplifies using PWM HW Module.

Note: Certain PICmicros with two or more CCP modules, such as P18F8520,
require you to specify the module you want to use. Simply append the number 1
or 2 to a Pwm. For example, Pwm?2_Start(); Also, for the sake of backward com-
pabitility with previous compiler versions and easier code management, MCU's
with multiple PWM modules have PWM library which is identical to PWMI1 (i.e.
you can use PWM_ Init() instead of PWM1 _Init() to initialize CCP1).

Library Routines

Pwm Init
Pwm Change Duty

Pwm_ Start
Pwm_ Stop
Pwm_lInit
Prototype void Pwm Init (long freq);

Description Initializes the PWM module with duty ratio 0. Parameter freq is a desired PWM fre-
quency in Hz (refer to device data sheet for correct values in respect with Fosc).

Pwm_Init needs to be called before using other functions from PWM Library.

Requires You need a CCP module in order to use this library. Check mikroC installation folder,
subfolder “Examples”, for alternate solutions.

Example Pwm_Init(5000); // Initialize PWM module at 5KHz

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @@3

MIKRODC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Pwm_Change_Duty

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS -

Prototype void Pwm Change Duty(char duty ratio);

Description Changes PWM duty ratio. Parameter duty ratio takes values from 0 to 255, where 0
is 0%, 127 is 50%, and 255 is 100% duty ratio. Other specific values for duty ratio can
be calculated as (Percent*255)/100.

Requires You need a CCP module on PORTC to use this library. To use this function, module
needs to be initalized — see Pwm_Init.

Example Pwm_Change Duty(192); // Set duty ratio to 75%

Pwm_Start

Prototype void Pwm Start (void);

Description Starts PWM.

Requires You need a CCP module on PORTC to use this library. To use this function, module
needs to be initalized — see Pwm_Init.

Example Pwm_Start();

Pwm_Stop

Prototype void Pwm_Stop (void);

Description Stops PWM.

Requires You need a CCP module on PORTC to use this library. To use this function, module
needs to be initalized — see Pwm_Init.

Example Pwm_Stop () ;

CTpage T

COMPILERS

mikroC
Méém? ct simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Library Example

/*The example changes PWM duty ratio on pin RC2 continually. If LED is connected
to RC2, you can observe the gradual change of emitted light. */

char i = 0, j = 0;

void main () {

PORTC = OxFF; // PORTC is output
Pwm_Init (5000); // Initialize PWM module at 5KHz
Pwm_ Start(); // Start PWM

while (1) {

// Slow down, allow us to see the change on LED:
for (i = 0; i < 20; i++) Delay us(500);

J++;

Pwm_Change Duty(j); // Change duty ratio

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @@5

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W"? de'

Hardware Connection

q

3
o

e N s e N s s O Y e s |

vce
12
GND
- 13
T osct
8Mhz I osc2
O

|||—-
-
3

RC2

¢Gv4810Id

rr —r

300R

N\

@@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

RS-485 Library

RS-485 is a multipoint communication which allows multiple devices to be con-
nected to a single signal cable. mikroC provides a set of library routines to provide
you comfortable work with RS-485 system using Master/Slave architecture.
Master and Slave devices interchange packets of information, each of these pack-
ets containing synchronization bytes, CRC byte, address byte, and the data. Each
Slave has its unique address and receives only the packets addressed to it. Slave
can never initiate communication. It is programmer’s responsibility to ensure that
only one device transmits via 485 bus at a time.

RS-485 routines require USART module on PORTC. Pins of USART need to be
attached to RS-485 interface transceiver, such as LTC485 or similar. Pins of trans-
ceiver (Receiver Output Enable and Driver Outputs Enable) should be connected
to PORTC, pin 2 (check the figure at end of the chapter).

Note: Address 50 is the common address for all Slaves (packets containing
address 50 will be received by all Slaves). The only exceptions are Slaves with
addresses 150 and 169, which require their particular address to be specified in the
packet.

Note: usart Init () must be called before initializing RS485.
Library Routines

RS485Master Init
RS485Master Receive
RS485Master Send
RS485Slave Init
RS485Slave Receive
RS485Slave Send

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @@7

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

RS485Master_Init

Prototype void Rs485master Init (unsigned short * port, unsigned short pin);
Description Initializes PIC MCU as Master in RS-485 communication.

Requires USART HW module needs to be initialized. See USART Init.

Example RS485Master Init (PORTC, 2);

RS485Master_Receive

Prototype void RS485Master Receive (char *data);

Description Receives any message sent by Slaves. Messages are multi-byte, so this function must be
called for each byte received (see the example at the end of the chapter). Upon receiving
a message, buffer is filled with the following values:

datal 0..2] is the message,

datal 3] is number of message bytes received, 1-3,

datal 4] is set to 255 when message is received,

datal 5] is set to 255 if error has occurred,

datal 6] is the address of the Slave which sent the message.

Function automatically adjusts datal 4] and datal 5] upon every received message.
These flags need to be cleared from the program.

Requires MCU must be initialized as Master in RS-485 communication in order to be assigned an
address. See RS485Master Init.

Example unsigned short msq 8] ;

RS485Master Receive (msg);

3@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroG

Mééoﬂ? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

RS485Master_Send

Prototype void RS485Master Send(char *data, char datalen, char address);

Description Sends data from buffer to Slave(s) specified by address via RS-485; datalenis a
number of bytes in message (1 <= datalen <= 3).

Requires MCU must be initialized as Master in RS-485 communication in order to be assigned an
address. See RS485Master Init.

It is programmer’s responsibility to ensure (by protocol) that only one device sends data
via 485 bus at a time.

Example unsigned short msqgl 8] ;

RS485Master Send(msg, 3, 0x12);

RS485Slave_Init

Prototype void Rs485slave Init (unsigned short * port, unsigned short pin,
char address);

Description Initializes MCU as Slave with a specified address in RS-485 communication. Slave
address can take any value between 0 and 255, except 50, which is common address
for all slaves.

Requires USART HW module needs to be initialized. See USART Init.

Example RS485Slave Init (PORTC, 2 ,160); // Initialize MCU as Slave with
address 160

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @@@

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

RS485Slave_Receive

Prototype void RS485Slave Receive (char *data);

Description Receives message addressed to it. Messages are multi-byte, so this function must be
called for each byte received (see the example at the end of the chapter). Upon receiving
a message, buffer is filled with the following values:

[0..2] is the message,
[3] is number of message bytes received, 1-3,
datal 4] is set to 255 when message is received,
[5] is set to 255 if error has occurred,
[6] is the address of the Slave which sent the message.

Function automatically adjusts datal 4] and datal 5] upon every received message.
These flags need to be cleared from the program.

Requires MCU must be initialized as Slave in RS-485 communication in order to be assigned an
address. See RS485Slave Init.

Example unsigned short msqgl 8] ;

RS485Slave Read (msq) ;

RS485Slave_Send

Prototype void RS485Slave Send(char *data, char datalen);

Description Sends data from buffer to Master via RS-485; datalen is a number of bytes in mes-
sage (1 <= datalen <= 3).

Requires MCU must be initialized as Slave in RS-485 communication in order to be assigned an
address. See RS485Slave Init.

It is programmer’s responsibility to ensure (by protocol) that only one device sends data
via 485 bus at a time.

Example unsigned short msqgl 8] ;

RS485Slave Send(msg, 2);

3@ @ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroC
Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Library Example

The example demonstrates working with PIC as Slave nod in RS-485 communication. PIC
receives only packets addressed to it (address 160 in our example), and general messsages with
target address 50. The received data is forwarded to PORTB, and sent back to Master.

unsigned short dat[8] ; // buffer for receiving/sending messages
char i = 0, J = 0;

void interrupt () {

/* Every byte is received by RS485Slave Read(dat);
If message 1is received without errors,
data[4] is set to 255 */

if (RCSTA.OERR) PORTD = 0x81;
RS485Slave Read(dat);
} /S~

void main () {

TRISB = 0;
TRISD = 0;
Usart Init(9600); // Initialize usart module
RS485Slave Init (PORTC ,2 ,160);// Initialize MCU as Slave with address 160
PIE1.RCIE = 1; // Enable interrupt
INTCON.PEIE = 1; // on byte received
PIE2.TXIE = 0; // via USART (RS485)
INTCON.GIE = 1;
PORTB = 0;
PORTD = O0;
dat[4] = 0; // Ensure that msg received flag is 0
dat[5] = 0; // Ensure that error flag is 0
do {
if (dat[5]) PORTD = O0OxAA; // If there is error, set PORTD to SAA
if (dat[4]) { // If message received:
dat[4] = 0; // Clear message received flag
j = dat[3] ; // Number of data bytes received
for (i = 1; 1 < jJ; i++)
PORTB = dat[—-i] ; // Output received data bytes
dat[0] ++; // Increment received dat[0]
RS485Slave Write(dat, 1); // Send it back to Master

}
} while (1);
}y //~!

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @ﬂ ﬂ

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W“? “Wu:

Hardware Connection

1~ b
Shielded pair I 1]
no longer than 300m E %
I 1]
/ i U I
1] [o]
— 56R vee E - %
— Yi[vee 0 i
Lt 1| 2heno "T1 i
vee P S6R o—4K7 —1:[osc1 ™ il
I:':|10K [[OSC2 m T] 26
! {]ro UVcc 8 8 Mhz 17 L N RCs[1-2
2l e[HoH| [!
_4[DE A] p == . =| []
DI GND [} r = i 1
LTC485 |

56R

VCC» [1]

L_lL_ll_lL_lTl_l L'_l
I

@ﬂ 2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méut? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Software 12C Library

mikroC provides routines which implement software 1>C. These routines are hard-
ware independent and can be used with any MCU. Software 12C enables you to
use MCU as Master in I2C communication. Multi-master mode is not supported.

Note: This library implements time-based activities, so interrupts need to be dis-
abled when using Soft I*C.

Library Routines

Soft I2C Config
Soft I2C Start
Soft I2C Read
Soft I2C Write
Soft I2C Stop

Soft_I2C_Config

Prototype void Soft I2C Config(char *port, const char SDI, const char SDO,
const char SCK);

Description Configures software 1?C. Parameter port specifies port of MCU on which SDA and scCL
pins are located. Parameters SCL and SDA need to be in range 0—7 and cannot point at
the same pin.

Soft_I2C Config needs to be called before using other functions from Soft I12C
Library.

Example Soft I2C Config(PORTB, 1, 2);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @ﬂ 3

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Soft_I2C_Start

Prototype void Soft I2C Start (void);

Description Issues START signal. Needs to be called prior to sending and receiving data.
Requires Soft I*C must be configured before using this function. See Soft I2C Config.
Example Soft I2C Start();

Soft_12C_Read

Prototype char Soft I2C Read(char ack);
Returns Returns one byte from the slave.
Description Reads one byte from the slave, and sends not acknowledge signal if parameter ack is 0,

otherwise it sends acknowledge.

Requires START signal needs to be issued in order to use this function. See Soft I2C Start.
Example tmp = Soft I2C Read(0); //Read data, send not-acknowledge signal
CTpage T

@ﬂ 4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

miqul: .

Mé{«lﬂ? ctdwk«ﬂée... MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Soft_I12C_Write

Prototype char Soft I2C Write (char data);

Returns Returns 0 if there were no errors.

Description Sends data byte (parameter data) via I?C bus.

Requires START signal needs to be issued in order to use this function. See Soft I2C_ Start.
Example Soft _I2C Write (0xA3);

Soft_12C_Stop

Prototype void Soft I2C_Stop(wvoid);

Description Issues STOP signal.

Requires START signal needs to be issued in order to use this function. See Soft I2C Start.

Example Soft I2C_Stop();

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @ﬂ 5

MIKROC

- C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Library Example

/* The example demonstrates use of Software I?C Library.

PIC MCU is connected (SCL,

SDA pins) to PCF8583 RTC (real-time clock).

Initialize full master mode

Issue start signal
Address PCF8583

Start
Write
Write
Write
Write
Write
Write
Write
Issue

from
0x80
0 to
0 to
0x30
0x11
0x24
0x08
stop

word at address 0 (config word)
to config. (pause counter...)
cents word

seconds word

to minutes word

to hours word

to year/date word

to weekday/month

signal

Issue start signal

Address PCF8530

Start from word at address 0

Write 0 to config word (enable counting)
Issue stop signal

Program sends date data to RTC. */

void main() {
Soft I2C Config (&PORTD, 4,3); //
Soft I2C_Start(); /7
Soft I2C Write (0xAO); //
Soft I2C Write(0); /7
Soft I2C Write (0x80); /7
Soft I2C Write(0); 7/
Soft I2C Write(0); 7/
Soft I2C Write (0x30); 7/
Soft I2C Write (0x11); //
Soft I2C Write (0x30); /7
Soft I2C Write (0x08); /7
Soft I2C_Stop(); //
Soft I2C_Start(); /7
Soft I2C Write (0xAO); //
Soft I2C Write(0); /7
Soft I2C Write(0); /7
Soft I2C_Stop(); //

Y/

page

MIKROELEKTRONIKA: DEVELOPMENT TOOLS -

BoOooks - COMPILERS

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Software SPI Library

mikroC provides library which implement software SPI. These routines are hard-
ware independent and can be used with any MCU. You can easily communicate
with other devices via SPI: A/D converters, D/A converters, MAX7219, LTC1290,
etc.

The library configures SPI to master mode, clock = 50kHz, data sampled at the
middle of interval, clock idle state low and data transmitted at low to high edge.

Note: These functions implement time-based activities, so interrupts need to be
disabled when using the library.

Library Routines

Soft Spi Config
Soft Spi Read
Soft Spi Write

Soft_Spi_Config

Prototype void Soft Spi Config(char *port, const char SDI, const char SDO,
const char SCK);

Description Configures and initializes software SPI. Parameter port specifies port of MCU on which
SDI, SDO, and SCK pins will be located. Parameters SDI, SDO, and SCK need to be in
range 0—7 and cannot point at the same pin.

Soft_Spi_Config needs to be called before using other functions from Soft SPI
Library.

Example This will set SPI to master mode, clock = 50kHz, data sampled at the middle of interval,
clock idle state low and data transmitted at low to high edge. SDI pin is RB1, SDO pin
is RB2 and SCK pin is RB3:

Soft Spi Config(PORTB, 1, 2, 3);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @ﬂ 7

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Soft_Spi_Read

Prototype char Soft Spi Read(char buffer);

Returns Returns the received data.

Description Provides clock by sending buffer and receives data.

Requires Soft SPI must be initialized and communication established before using this function.
See soft Spi Config.

Example tmp = Soft Spi Read(buffer);

Soft_Spi_Write

Prototype void Soft Spi Write(char data);
Description Immediately transmits data.
Requires Soft SPI must be initialized and communication established before using this function.

See Soft Spi Config.

Example Soft Spi Write(l);

@ﬂ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

miqul: .

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Library Example

This is a sample program which demonstrates the use of the Microchip's MCP4921 12-bit D/A converter
with PIC mcu's. This device accepts digital input (number from 0..4095) and transforms it to the output
voltage, ranging from 0..Vref. In this example the D/A is connected to PORTC and communicates with
PIC through the SPI. The reference voltage on the mikroElektronika's DAC module is 5 V. In this exam-
ple, the entire DAC’s resolution range (12bit ? 4096 increments) is covered, meaning that you’ll need to
hold a button for about 7 minutes to get from mid-range to the end-of-range.

const char CHIP SELECT = 1, TRUE = 0OxFF;
unsigned value;

void InitMain() {
Soft SPI Config(&PORTB, 4,5,3);
TRISB &= ~(CHIP SELECT); // ClearBit (TRISC,CHIP SELECT);
TRISC = 0x03;
}
// DAC increments (0..4095) --> output voltage (0..Vref)
void DAC Output (unsigned valueDAC) {
char temp;

PORTB &= ~(CHIP SELECT); // ClearBit (PORTC,CHIP SELECT);
temp = (valueDAC >> 8) & OxOF; // Prepare hi-byte for transfer
temp |= 0x30; // It's a 12-bit number, so only
Soft Spi Write (temp); // lower nibble of high byte is used
temp = valueDAC; // Prepare lo-byte for transfer
Soft Spi Write(temp);
PORTB |= CHIP SELECT; // SetBit(PORTC,CHIPfSELECT);
Y/~
void main () {
InitMain () ;
DAC Output (2048) ; // When program starts, DAC gives
value = 2048; // the output in the mid-range
while (1) { // Main loop
if ((Button (&PORTC,0,1,1)== TRUE) // Test button on BO (increment)
&& (value < 4095)) {
valuet+ ;
} else {
if ((Button (&PORTC,1,1,1)== TRUE) // If RBO is not active then test
&& (value > 0)) { // RB1 (decrement)
value-- ;
}
}
DAC Output (value); // Perform output
Delay ms (100); // Slow down key repeat pace
}
Yy //~!

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @ﬂ @

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Software UART Library

mikroC provides library which implements software UART. These routines are
hardware independent and can be used with any MCU. You can easily communi-
cate with other devices via RS232 protocol — simply use the functions listed
below.

Note: This library implements time-based activities, so interrupts need to be dis-
abled when using Soft UART.

Library Routines

Soft Uart Init
Soft Uart Read
Soft Uart Write

Soft_Uart_lInit

Prototype void Soft Uart Init (unsigned short *port, unsigned short rx,
unsigned short tx, unsigned short baud rate, char inverted);

Description Initalizes software UART. Parameter port specifies port of MCU on which RX and TX
pins are located; parameters rx and tx need to be in range 0—7 and cannot point at the
same pin; baud_rate is the desired baud rate. Maximum baud rate depends on PIC’s
clock and working conditions. Parameter inverted, if set to non-zero value, indicates
inverted logic on output.

Soft Uart Init needs to be called before using other functions from Soft UART
Library.

Example Soft Uart Init (PORTB, 1, 2, 9600, 0);

@2@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroG

Mééoﬂ? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Soft_Uart_Read

Prototype unsigned short Soft Uart Read(unsigned short *error);
Returns Returns a received byte.
Description Function receives a byte via software UART. Parameter error will be zero if the

transfer was successful. This is a non-blocking function call, so you should test the
error manually (check the example below).

Requires Soft UART must be initialized and communication established before using this func-
tion. See Soft Uart Init.

Example // Here’s a loop which holds until data is received:

do
data = Soft Uart Read(&error);
while (error);

// Now we can work with it:
if (data) { ...}

Soft_Uart_Write

Prototype void Soft Uart Write(char data);

Description Function transmits a byte (data) via UART.

Requires Soft UART must be initialized and communication established before using this func-
tion. See Soft Uart Init.

Be aware that during transmission, software UART is incapable of receiving data — data
transfer protocol must be set in such a way to prevent loss of information.

Example char some byte = 0x0A;

Soft Uart Write(some byte);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @2 ﬂ

ikro
MIKRODC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Library Example

The example demonstrates simple data exchange via software UART. When PIC
MCU receives data, it immediately sends the same data back. If PIC is connected

to the PC (see the figure below), you can test the example from mikroC terminal
for RS232 communication, menu choice Tools > Terminal.

unsigned short data = 0, ro = O0;
unsigned short *er;

void main () {
er = &ro;

// Init (8 bit, 2400 baud rate,

no parity bit,
Soft Uart Init (PORTB, 1, 2,

non-inverted logic)

2400, 0);

do {

do {

data = Soft Uart Read(er); // Receive data

} while (*er);

Soft Uart Write(data); // Send data via UART
} while (1);

}y //~!

@22 MIKROELEKTRONIKA: DEVELOPMENT TOOLS -

BoOooks - COMPILERS

miqul: .

Mé{«lﬂ? ctawkzﬂée... MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Sound Library

mikroC provides a Sound Library which allows you to use sound signalization in
your applications. You need a simple piezo speaker (or other hardware) on desig-
nated port.

Library Routines

Sound_Init

Sound Play
Sound_lInit
Prototype void Sound Init (char *port, char pin);
Description Prepares hardware for output at specified port and pin. Parameter pin needs to be within
range 0-7.
Example Sound Init (PORTB, 2); // Initialize sound on RB2
Sound_Play
Prototype void Sound Play(char period div 10, unsigned num of periods);

Description Plays the sound at the specified port and pin (see Sound_Init). Parameter period div_10
is a sound period given in MCU cycles divided by ten, and generated sound lasts for a
specified number of periods (num_of periods).

Requires To hear the sound, you need a piezo speaker (or other hardware) on designated port.
Also, you must call Sound_Init to prepare hardware for output.

Example To play sound of 1KHz: T = 1/f = 1ms = 1000 cycles @ 4MHz. This gives us our first
parameter: 1000/10 = 100. Play 150 periods like this:

Sound Play (100, 150);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @23

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

Library Example

The example is a simple demonstration of how to use sound library for playing
tones on a piezo speaker. The code can be used with any MCU that has PORTB
and ADC on PORTA. Sound frequencies in this example are generated by reading
the value from ADC and using the lower byte of the result as base for T (f= 1/T).

int adcValue;

void main ()

{

PORTB = 0; //
TRISB = 0; //
INTCON = 0; //
ADCON1 = 0x82; //
TRISA = OxFF; //
Sound Init (PORTB, 2); /7
while (1) { //

adcValue = ADC Read(2); /7

Sound Play (adcValue, 200); //

Clear PORTB

PORTB 1is output

Disable all interrupts

Configure VDD as Vref, and analog channels
PORTA is input

Initialize sound on RB2

Play in loop:
Get lower byte from ADC
Play the sound

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééoﬂ? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

SPI Library

SPI module is available with a number of PIC MCU models. mikroC provides a
library for initializing Slave mode and comfortable work with Master mode. PIC
can easily communicate with other devices via SPI: A/D converters, D/A convert-
ers, MAX7219, LTC1290, etc. You need PIC MCU with hardware integrated SPI
(for example, PIC16F877).

Note: Certain PICmicros with two SPI modules, such as P18F8722, require you to
specify the module you want to use. Simply append the number 1 or 2 to a Spi.
For example, spi2 write () ; Also, for the sake of backward compabitility with
previous compiler versions and easier code management, MCU's with multiple
SPI modules have SPI library which is identical to SPI1 (i.e. you can use
SPI_Init () instead of sp11 Tnit () for SPI operations).

Library Routines

Spi Init
Spi Init Advanced
Spi Read
Spi Write
Spi_lInit
Prototype void Spi Init(void);
Description Configures and initializes SPI with default settings. SPI_Init Advanced or
SPI_Init needs to be called before using other functions from SPI Library.
Default settings are: Master mode, clock Fosc/4, clock idle state low, data transmitted on
low to high edge, and input data sampled at the middle of interval.
For custom configuration, use Spi_Init Advanced.
Requires You need PIC MCU with hardware integrated SPI.
Example Spi_Init();

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @25

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Spi_Init_Advanced

Prototype void Spi Init Advanced(char master, char data sample, char
clock idle, char transmit edge);

Description Configures and initializes SPI. Spi _Init Advanced or SPI_Init needs to be called
before using other functions of SPI Library.

Parameter mast slav determines the work mode for SPI; can have the values:

MASTER OSC_DIV4 // Master clock=Fosc/4
MASTER OSC _DIV16 // Master clock=Fosc/16
MASTER OSC_DIV64 // Master clock=Fosc/64

MASTER TMR2 // Master clock source TMRZ2
SLAVE SS ENABLE // Master Slave select enabled
SLAVE SS DIS // Master Slave select disabled

The data_sample determines when data is sampled; can have the values:

DATA SAMPLE MIDDLE // Input data sampled in middle of interval
DATA SAMPLE END // Input data sampled at the end of interval

Parameter clock idle determines idle state for clock; can have the following values:

CLK_IDLE HIGH // Clock idle HIGH
CLK_IDLE_LOW // Clock idle LOW

Parameter transmit edge can have the following values:

LOW 2 HIGH // Data transmit on low to high edge
HIGH 2 LOW // Data transmit on high to low edge
Requires You need PIC MCU with hardware integrated SPI.
Example This will set SPI to master mode, clock = Fosc/4, data sampled at the middle of interval,

clock idle state low and data transmitted at low to high edge:

Spi_Init Advanced (MASTER OSC_DIV4, DATA SAMPLE MIDDLE,
CLK_IDLE LOW, LOW 2 HIGH)

@2@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

making & smple... N MIKROC - © COMPILER FOR MICROCHIP PIE MICROCONTROLLERS
Spi_Read
Prototype char Spi Read(char buffer);
Returns Returns the received data.
Description Provides clock by sending buffer and receives data at the end of period.
Requires SPI must be initialized and communication established before using this function. See

Spi Init Advanced or Spi Init.

Example short take, buffer;

take = Spi Read (buffer);

Spi_Write

Prototype void Spi Write(char data);

Description Writes byte data to SSPBUF, and immediately starts the transmission.

Requires SPI must be initialized and communication established before using this function. See
Spi Init Advancedor Spi Init.

Example Spi Write(1);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @27

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

Library Example

The code demonstrates how to use SPI library functions. Assumed HW configura-
tion is: max7219 (chip select pin) connected to RC1, and SDO, SDI, SCK pins are
connected to corresponding pins of max7219.

) Function Declarations
void max7219 initl();

S F.D. end
char i;

void main () {

Spi Init(); // Standard configuration

TRISC &= OxFD;

max7219 initl(); // Initialize max7219

for (i = 1; 1 <= 8u; i++) {
PORTC &= OxFD; // Select max7219
Spi Write (1) ; // Send i1 to max7219 (digit place)
Spi Write(8 - 1i); // Send i to max7219 (digit)
PORTC |= 2; // Deselect max7219

}

TRISB = 0;

PORTB = 1i;

Yy //~!
- Vo T-

@2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méé&? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

USART Library

USART hardware module is available with a number of PICmicros. mikroC
USART Library provides comfortable work with the Asynchronous (full duplex)
mode.You can easily communicate with other devices via RS232 protocol (for
example with PC, see the figure at the end of the topic — RS232 HW connection).
You need a PIC MCU with hardware integrated USART, for example PIC16F877.
Then, simply use the functions listed below.

Note: USART library functions support module on PORTB, PORTC, or PORTG,
and will not work with modules on other ports. Examples for PICmicros with
module on other ports can be found in “Examples” in mikroC installation folder.

Library Routines

Usart Init
Usart Data Ready
Usart Read
Usart Write

Note: Certain PICmicros with two USART modules, such as P18F8520, require
you to specify the module you want to use. Simply append the number 1 or 2 to a
function name. For example, Usart wWrite2 () ; Also, for the sake of backward
compabitility with previous compiler versions and easier code management,
MCU's with multiple USART modules have USART library which is identical to
USART]1 (i.e. you can use Usart Init () instead of Usart Init1l () for Usart
operations).

Usart_Init

Prototype void Usart Init(const long baud rate);

Description Initializes hardware USART module with the desired baud rate. Refer to the device data
sheet for baud rates allowed for specific Fosc. If you specify the unsupported baud rate,
compiler will report an error.

Usart_Init needs to be called before using other functions from USART Library.

Requires You need PIC MCU with hardware USART.

Example Usart Init(2400); // Establish communication at 2400 bps

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @2@

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Usart_Data_Ready

Prototype char Usart Data Ready(void);

Returns Function returns 1 if data is ready or 0 if there is no data.

Description Use the function to test if data is ready for transmission.

Requires USART HW module must be initialized and communication established before using

this function. See Usart Init.

Example int receive;

// If data is ready, read it:

if (Usart Data Ready()) receive = Usart Read;
Usart_Read

Prototype char Usart Read(wvoid);

Returns Returns the received byte. If byte is not received, returns 0.

Description Function receives a byte via USART. Use the function Usart Data Ready to test if
data is ready first.

Requires USART HW module must be initialized and communication established before using
this function. See Usart Init.

Example int receive;
// If data is ready, read it:
if (Usart Data Ready()) receive = Usart Read;

“TTpage e

@@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

ikroC
Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Usart_Write

Prototype char Usart Write (char data);

Description Function transmits a byte (data) via USART.

Requires USART HW module must be initialized and communication established before using
this function. See Usart Init.

Example int chunk;

Usart Write (chunk); /* send data chunk via USART */

Library Example

The example demonstrates simple data exchange via USART. When PIC MCU
receives data, it immediately sends the same data back. If PIC is connected to the
PC (see the figure below), you can test the example from mikroC terminal for
RS232 communication, menu choice Tools > Terminal.

unsigned short 1i;
void main () {

// Initialize USART module (8 bit, 2400 baud rate, no parity bit..)
Usart Init (2400);

do {
if (Usart Data Ready()) { // If data 1s received
i = Usart Read(); // Read the received data
Usart Write(i); // Send data via USART

}
} while (1);
Y /!

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @3@

MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W“? x"’m

Hardware Connection

- =
PC
RS-232 O (gég O CN3
CON 1000 5 SUB-D 9p
- . CONNECT Receive
v . MCU TO PC data (Rx)
" . — >
SERIAL > o
CABLE — : P e
Co CONNECT) ¢ >
.o . Send
l o l peTomey Data (Tx)
O] CN3
SUB-D 9p
vce i !
I i
L] [)
lcw i i
100nF = i i
—I- l U |
1 O

vee] - i
U6 i 0 1
13 < 12 12 ‘éﬁg 1) %
—8[R1IN R1 OUTjg— Rx - —[13 v -h i
4411 R2IN g RZOUTj 1 —{|osc2 01 0 "
——{| N > T ouT[}—— 8 Mhz E N RC7;||?
41:[T2IN T20UT]:7 HOR | | Rcej
|—[C1+ C2+ <, 7 i
ESUF&[or N e =]
E10 V- w v 2 I 1
10uF|4_L_[on N vee1-"] E12
- vece T

3@2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méut? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

USB HID Library

Universal Serial Bus (USB) provides a serial bus standard for connecting a wide
variety of devices, including computers, cell phones, game consoles, PDAs, etc.

mikroC includes a library for working with human interface devices via Universal
Serial Bus. A human interface device or HID is a type of computer device that
interacts directly with and takes input from humans, such as the keyboard, mouse,
graphics tablet, and the like.

Library Routines

Hid Enable
Hid Read
Hid Write
Hid Disable

Hid_Enable
Prototype void Hid Enable (unsigned *readbuff, unsigned *writebuff);
Description Enables USB HID communication. Parameters readbuff and writebuff are the Read
Buffer and the Write Buffer, respectively, which are used for HID communication.
This function needs to be called before using other routines of USB HID Library.
Example Hid Enable(&rd, &wr);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @33

MIKROC

Hid_Disable

_______ _ B BAoMPILER FOR MIGROCHIP PIC MICROCONTROLLERS el L LS00
Hid_Read
Prototype unsigned short Hid Read(void);
Returns Number of characters in Read Buffer received from Host.
Description Receives message from host and stores it in the Read Buffer. Function returns the num-
ber of characters received in Read Buffer.
Requires USB HID needs to be enabled before using this function. See Hid Enable.
Example get = Hid Read();
Hid_Write
Prototype void Hid Write (unsigned *writebuff, unsigned short len);
Description Function sends data from wrbuf £ to host. Write Buffer is the same parameter as used in
initialization. Parameter 1en should specify a length of the data to be transmitted.
Requires USB HID needs to be enabled before using this function. See Hid Enable.
Example Hid Write(&wr, len);

Prototype void Hid Disable (void);
Description Disables USB HID communication.
Requires USB HID needs to be enabled before using this function. See Hid_Enable.
Example Hid Disable();
Cpage e

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroc .

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Library Example

The following example continually sends sequence of numbers 0..255 to the PC via Universal
Serial Bus.

unsigned short m, k;
unsigned short userRD buffer| 64] ;
unsigned short userWR buffer| 64] ;

void interrupt () {
asm CALL Hid InterruptProc
asm nop

} /S~

void Init Main() {
// Disable all interrupts
// Disable GIE, PEIE, TMROIE, INTOIE,RBIE
INTCON = 0;
INTCON2 = O0xF5;
INTCON3 = 0xCO;
// Disable Priority Levels on interrupts
RCON.IPEN = 0;
PIE1l = 0; PIE2 = 0; PIR1 = 0; PIR2 = O0;

// Configure all ports with analog function as digital
ADCON1 |= O0xOF;

// Ports Configuration
TRISA = 0; TRISB = 0; TRISC = OxFF; TRISD = OxFF; TRISE = 0x07;
LATA = 0; LATB = 0; LATC = 0; LATD = 0; LATE = 0;

// Clear user RAM

// Banks [00 .. 07] (8 x 256 = 2048 Bytes)
asm {

LFSR FSRO, 0x000

MOVLW 0x08

CLRF POSTINCO, O

CPFSEQ FSROH, O

BRA S - 2

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @35

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W"? (ZW...

// Timer 0

TOCON = 0x07;
TMROH = (65536-156) >> 8;
TMROL = (65536-156) & OXxFF;
INTCON.TOIE = 1; // Enable TOIE
TOCON.TMROON = 1;
Y S/~

/** Main Program Routine **/

void main () {
Init Main();
Hid Enable (&userRD buffer, &userWR buffer);

do {
for (k = 0; k < 255; k++) {
// Prepare send buffer
userWR buffer[0] = k;

// Send the number via USB
Hid Write (&userWR buffer, 1);

}
} while (1);

Hid Disable();
y S/~

@@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méap? ct simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

HW Connection

MCLR RB7
RAO RB6
RA1 RB5
RA2 RB4
RA3 RB3
RA4 RB2
RA5 RB1
REO RBO
RE1 VDD

A rAararararariar

vce

RE2 VSS
Tl[VDD RD7

12
——] vss RD6

== 13
—] osc1 RD5

14

o
=
N
o
(7]
(2]
N
<
(2]
(2]

RD4
RCO RC7
RC6
RC2 RC5

I—[Vusb RC4

[l roo RD3
100nF == 100nF ==
[] ro1 RD2

vCC

> USB

GND

1|
If
11
L
i
A
O
—

N N [N SN [N N N N N N N N N N N N N N S _—)

I
lw_FITWWr

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @3?

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Util Library

Util library contains miscellaneous routines useful for project development.

Button
Prototype char Button(char *port, char pin, char time, char active state);
Returns Returns 0 or 255.
Description Function eliminates the influence of contact flickering upon pressing a button (debounc-
ing).
Parameter port specifies the location of the button; parameter pin is the pin number on
designated port and goes from 0..7; parameter time is a debounce period in millisec-
onds; parameter active state can be either 0 or 1, and it determines if the button is
active upon logical zero or logical one.
Example Example reads RBO, to which the button is connected; on transition from 1 to 0 (release
of button), PORTD is inverted:
do {
if (Button (&PORTB, 0, 1, 1)) oldstate = 1;
if (oldstate && Button (&PORTB, 0, 1, 0)) {
PORTD = ~PORTD;
oldstate = 0;
}
} while(1);
CTpage T

@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

ANSI C Ctype Library

mikroC provides a set of standard ANSI C library functions for testing and map-
ping characters.

Note: Not all of the standard functions have been included. Functions have been
implemented according to the ANSI C standard, but certain functions have been
modified in order to facilitate PIC programming.

Library Routines

isalnum
isalpha
iscntrl
isdigit
isgraph
islower
isprint
ispunct
isspace
isupper
isxdigit
toupper
tolower

isalnum

Prototype char isalnum(char character);

Description Function returns 1 if the character is alphanumeric (A-Z, a-z, 0-9), otherwise returns
zero.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @3@

MIKROE - € BaMPILER FOR MICRAOCHIP PIC MICROCONTROLLERS . W 98 simple. ..
isalpha
Prototype char isalpha(char character);
Description Function returns 1 if the character is alphabetic (A-Z, a-z), otherwise returns zero.
iscntrl
Prototype char iscntrl (char character);
Description Function returns 1 if the character is a control character or delete (decimal 0-31 and
127), otherwise returns zero.

isdigit
Prototype char isdigit (char character);
Description Function returns 1 if the character is a digit (0-9), otherwise returns zero.
isgraph
Prototype char isgraph(char character);
Description Function returns 1 if the character is a printable character, excluding the space (deci-
mal 32), otherwise returns zero.
CTpage T

@4@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

miqul: .

rllng, LML MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS
islower
Prototype char islower (char character);
Description Function returns 1 if the character is a lowercase letter (a-z), otherwise returns zero.
isprint
Prototype char isprint (char character);
Description Function returns 1 if the character is printable (decimal 32-126), otherwise returns
ZeTo.
ispunct
Prototype char ispunct(char character);

Description Function returns 1 if the character is punctuation (decimal 32-47, 58-63, 91-96, 123-
126), otherwise returns zero.

isspace

Prototype char isspace(char character);

Description Function returns 1 if the character is white space (space, CR, HT, VT, NL, FF), other-
wise returns zero.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @4@

MIKROE - € BaMPILER FOR MICRAOCHIP PIC MICROCONTROLLERS . W 98 simple. ..
isupper
Prototype char isupper (char character);
Description Function returns 1 if the character is an uppercase letter (A-Z), otherwise returns 0.
isxdigit
Prototype char isxdigit (char character);
Description Function returns 1 if the character is a hex digit (0-9, A-F, a-f), otherwise returns
Zero.
toupper
Prototype char toupper (int character);
Description If the character is a lowercase letter (a-z), function returns an uppercase letter.
Otherwise, function returns an unchanged input parameter.

tolower
Prototype char tolower (int character);
Description If the character is an uppercase letter (A-Z), function returns a lowercase letter.
Otherwise, function returns an unchanged input parameter.
Cpage e

@42 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroC

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

ANSI C Math Library

mikroC provides a set of standard ANSI C library functions for floating point
math handling.

Note: Functions have been implemented according to the ANSI C standard, but
certain functions have been modified in order to facilitate PIC programming.

Library Routines

acos
asin
atan
atan?2
ceil
cos
cosh
exp
fabs
floor
frexp
ldexp
log
logl0
modf
pow
sin
sinh
sgrt
tan
tanh

acos

Prototype double acos (double x);

Description Function returns the arc cosine of parameter x; that is, the value whose cosine is x.
Input parameter x must be between -1 and 1 (inclusive). The return value is in radians,
between 0 and pi (inclusive).

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @43

MIKROD - C GOMPILER FOR MIGROCHIP PIC MICROCONTROLLERS e making & slmple...
asin
Prototype double asin (double x);
Description Function returns the arc sine of parameter x; that is, the value whose sine is x. Input

parameter x must be between -1 and 1 (inclusive). The return value is in radians,
between -pi/2 and pi/2 (inclusive).

atan

Prototype double atan (double x);

Description Function computes the arc tangent of parameter x; that is, the value whose tangent is x.
The return value is in radians, between -pi/2 and pi/2 (inclusive).

atan2

Prototype double atan2 (double y, double x);

Description This is the two argument arc tangent function. It is similar to computing the arc tangent
of y/x, except that the signs of both arguments are used to determine the quadrant of
the result, and x is permitted to be zero. The return value is in radians, between -pi and
pi (inclusive).

ceil

Prototype double ceil (double num) ;

Description Function returns value of parameter num rounded up to the next whole number.

CTpage T

344 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

making & simple... o} MIKROC - © COMPILER FOR MICROCHIP PIE MICROCONTROLLERS
CcoSs
Prototype double cos (double x);
Description Function returns the cosine of x in radians. The return value is from -1 to 1.
cosh
Prototype double cosh (double x);
Description Function returns the hyperbolic cosine of x, defined mathematically as (eX+e™%) /2. If
the value of x is too large (if overflow occurs), the function fails.

exp
Prototype double exp (double x);
Description Function returns the value of e — the base of natural logarithms — raised to the power
of x (i.e. e¥).
fabs
Prototype double fabs (double num) ;
Description Function returns the absolute (i.e. positive) value of num.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @45

MIKROD - C GOMPILER FOR MIGROCHIP PIC MICROCONTROLLERS e W o simple...
floor
Prototype double floor (double num) ;
Description Function returns value of parameter num rounded down to the nearest integer.
frexp
Prototype double frexp (double num, int *n);
Description Function splits a floating-point value num into a normalized fraction and an integral

power of 2. Return value is the normalized fraction, and the integer exponent is stored
in the object pointed to by n.

Idexp
Prototype double ldexp (double num, int n);
Description Function returns the result of multiplying the floating-point number num by 2 raised to
the power exp (i.e. returns x* 21).
log
Prototype double log(double x);
Description Function returns the natural logarithm of x (i.e. Log, (x)).
Cpage e

@4@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

making & simple... o} MIKROD - € COMPILER FOR MICROCHIP PIC MICROCONTROLLERS
log10
Prototype double 10gl0 (double x);
Description Function returns the base-10 logarithm of x (i.e. log, (x)).
modf
Prototype double modf (double num, double *whole);
Description Function returns the signed fractional component of num, placing its whole number

component into the variable pointed to by whole.

pow
Prototype double pow (double x, double vy);
Description Function returns the value of x raised to the power of y (i.e. x¥). If the x is negative,
function will automatically cast the y into unsigned long.
sin
Prototype double sin (double x);
Description Function returns the sine of x in radians. The return value is from -1 to 1.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @47

MIKROE - € BaMPILER FOR MICRAOCHIP PIC MICROCONTROLLERS . W 98 simple. ..
sinh
Prototype double sinh (double x);
Description Function returns the hyperbolic sine of x, defined mathematically as (eX-e~%) /2. If the
value of x is too large (if overflow occurs), the function fails.

sqrt
Prototype double sqgrt (double num) ;
Description Function returns the non negative square root of num.
tan
Prototype double tan (double x);
Description Function returns the tangent of x in radians. The return value spans the allowed range of
floating point in mikroC.
tanh
Prototype double tanh (double x);
Description Function returns the hyperbolic tangent of x, defined mathematically as
sinh (x) /cosh (x).
CTpage T

@4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

miqul: .

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

ANSI C Stdlib Library

mikroC provides a set of standard ANSI C library functions of general utility.

Note: Not all of the standard functions have been included. Functions have been
implemented according to the ANSI C standard, but certain functions have been
modified in order to facilitate PIC programming.

Library Routines

abs
atof
atoi
atol
div
1ldiv
labs
max
min
rand
srand
xtoi

abs

Prototype int abs (int num);

Description Function returns the absolute (i.e. positive) value of num.

atof

Prototype double atof (char *s)

Description Function converts the input string s into a double precision value, and returns the value.
Input string s should conform to the floating point literal format, with an optional white-
space at the beginning. The string will be processed one character at a time, until the
function reaches a character which it doesn’t recognize (this includes a null character).

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @4@

MIKROD - C GOMPILER FOR MIGROCHIP PIC MICROCONTROLLERS e making & slmple...
atoi
Prototype int atoi(char *s);
Description Function converts the input string s into an integer value, and returns the value. Input

string s should consist exclusively of decimal digits, with an optional whitespace and a
sign at the beginning. The string will be processed one character at a time, until the
function reaches a character which it doesn’t recognize (this includes a null character).

atol

Prototype long atol (char *s)

Description Function converts the input string s into a long integer value, and returns the value.
Input string s should consist exclusively of decimal digits, with an optional whitespace
and a sign at the beginning. The string will be processed one character at a time, until
the function reaches a character which it doesn’t recognize (this includes a null charac-
ter).

div

Prototype div_t div(int numer, int denom);

Description Function computes the result of the division of the numerator numer by the denominator
denom; function returns a structure of type div_t comprising quotient (quot) and
remainder (rem).

CTpage T

@5@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

W & slmple... b MIKROC - © COMPILER FOR MICROCHIP PIE MICROCONTROLLERS
Idiv
Prototype ldiv_t 1ldiv(long numer, long denom);
Description Function is similar to the div function, except that the arguments and the result struc-

ture members all have type 1ong.

Function computes the result of the division of the numerator numer by the denominator
denom; function returns a structure of type div_t comprising quotient (quot) and
remainder (rem).

labs

Prototype long labs (long num) ;

Description Function returns the absolute (i.e. positive) value of a long integer num.
max

Prototype int max(int a, int b);

Description Function returns greater of the two integers, a and b.
min

Prototype int min(int a, int Db);

Description Function returns lower of the two integers, a and b.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @5ﬂ

MIKROE - € BaMPILER FOR MICRAOCHIP PIC MICROCONTROLLERS . W 98 simple. ..
rand
Prototype int rand(void);
Description Function returns a sequence of pseudo-random numbers between 0 and 32767. Function

will always produce the same sequence of numbers unless srand () is called to seed the
starting point.

srand

Prototype void srand(unsigned seed);

Description Function uses the seed as a starting point for a new sequence of pseudo-random num-
bers to be returned by subsequent calls to rand (). No values are returned by this func-
tion.

xtoi

Prototype int xtoi(char *s);

Description Function converts the input string s consisting of hexadecimal digits into an integer
value. Input parametes s should consist exclusively of hexadecimal digits, with an
optional whitespace and a sign at the beginning. The string will be processed one char-
acter at a time, until the function reaches a character which it doesn’t recognize (this
includes a null character).

CTpage T

@52 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méut? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

ANSI C String Library

mikroC provides a set of standard ANSI C library functions useful for manipulat-
ing strings and arrays of char.

Note: Not all of the standard functions have been included. Functions have been
implemented according to the ANSI C standard, but certain functions have been
modified in order to facilitate PIC programming.

Library Routines

memcmp
memcpy
memmove
memset
memchr
strcat
strchr
strcmp
strcpy
strlen
strncat
strncpy
strspn
strcspn
strncmp
strpbrk
strrchr
strstr
strtok

memcmp

Prototype int *memcmp (void *sl, wvoid *s2, int n);

Description Function compares the first n characters of objects pointed to by s1 and s2, and returns
zero if the objects are equal, or returns a difference between the first differing characters
(in a left-to-right evaluation). Accordingly, the result is greater than zero if the object
pointed to by s1 is greater than the object pointed to by s2, and vice versa.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @53

MIKROG - G COMPILER FOR MICROCHIR PIC MICROCONTROLLERS . _.__.......%% _é‘_’"f_ G dmple. ..
memcpy
Prototype void *memcpy (void *sl, woid *s2, int n);
Description Function copies n characters from the object pointed to by s2 into the object pointed to
by s1. Objects may not overlap. Function returns the value of s1.

memmoyve

Prototype void *memmove (void *sl, wvoid *s2, int n);

Description Function copies n characters from the object pointed to by s2 into the object pointed to
by s1. Unlike with memcpy (), memory areas s1 and s2 may overlap. Function returns
the value of s1.

memset

Prototype void *memset (void *s, int ¢, int n);

Description Function copies the value of character c (converted to char) into each of the first n
characters of the object pointed by s. Function returns the value of s.

memchr

Prototype void * memchr (void *p, unsigned int n, unsigned int v);

Description Function locates the first occurrence of byte v in the initial n bytes of memory area start-
ing at the address p. Function returns the offset of this occurrence from the memory
address p or $FFFF if the v was not found.

For parameter p you can use either a numerical value (literal/variable/constant) indicat-
ing memory address or a dereferenced value of an object, for example @mystring or
@PORTB.
CTpage T

354 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

MIKROC -

strcat

Prototype char *strcat (char *sl, char *s2);

Description Function appends the string s2 to the string s1, overwriting the null character at the end
of s1. Then, a terminating null character is added to the result. Strings may not overlap,
and s1 must have enough space to store the result. Function returns a resulting string
sl.

strchr

Prototype char *strchr(char *s, char c);

Description Function locates the first occurrence of character c in the string s. Function returns a
pointer to the ¢, or a null pointer if ¢ does not occur in s. The terminating null character
is considered to be a part of the string.

strcmp

Prototype char strcmp(char *sl, char *s2);

Description Function compares strings s1 and s2, and returns zero if the strings are equal, or returns
a difference between the first differing characters (in a left-to-right evaluation).
Accordingly, the result is greater than zero if s1 is greater than s2, and vice versa.

strcpy

Prototype char *strcpy(char *sl, char *s2);

Description Function copies the string s2 into the string s1. If successful, function returns s1. The
strings may not overlap.

strlen

Prototype unsigned strlen(char *s);

Description Function returns the length of the string s (the terminating null character does not count
against string’s length).

C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS

MIKROC - C COMPILER FOR MicROGHIR PIC MIGROCONTROLLERS ______________________‘waking & dmple...
strncat
Prototype char *strncat (char *sl, char *s2, int n);
Description Function appends not more than n characters from the string s2 to s1. The initial char-

acter of s2 overwrites the null character at the end of s1. A terminating null character is
always appended to the result. Function returns s1.

strncpy

Prototype char *strncpy(char *sl, char *s2, int n);

Description Function copies not more than n characters from string s2 to s1. The strings may not
overlap. If s2 is shorter than n characters, then s1 will be padded out with null charac-
ters to make up the difference. Function returns the resulting string s1.

strspn

Prototype int strspn(char *sl, char *s2);

Description Function returns the length of the maximum initial segment of s1 which consists entire-
ly of characters from s2. The terminating null character character at the end of the string
is not compared.

strcspn

Prototype char strcspn(char * sl, char * s2);

Description The strcspn function computes the length of the maximum initial segment of the string
pointed to by s1 which consists entirely of characters not from the string pointed to by
s2.Function returns the length of the segment.

CTpage T

35@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroG

making & simple... o} MIKROD - € COMPILER FOR MICROCHIP PIC MICROCONTROLLERS
strncmp
Prototype int strncmp(char * sl, char * s2, char len);
Description Function lexicographically compares the first n bytes of the strings s1 and s2 and returns

a value indicating their relationship:

Value Meaning

< 0 sl "less than" s2
=0 sl "equal to" s2

> 0 sl "greater than" s2

The value returned by function is determined by the difference between the values of the
first pair of bytes that differ in the strings being compared (within first n bytes).

strpbrk

Prototype char * strpbrk(char * sl, char * s2);

Description Function searches s! for the first occurrence of any character from the string s2. The
null terminator is not included in the search. Function returns an index of the matching
character in s1. If s1 contains no characters from s2, function returns $FF.

strpbrk
Prototype char * strrchr(char * ptr, unsigned int chr);
Description Function searches the string ptr for the last occurrence of character ch. The null charac-

ter terminating ptr is not included in the search. Function returns an index of the last ch
found in ptr; if no matching character was found, function returns $FF.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @57

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

Prototype char * strstr(char * sl, char * s2);

Description Function locates the first occurrence of the string s2 in the string sl (excluding the ter-
minating null character).

Function returns a number indicating the position of the first occurrence of s2 in sl1; if
no string was found, function returns $FF. If s2 is a null string, the function returns 0.

strtok

Prototype char * strtok(char * sl, char * s2);

Returns The strtok function returns a pointer to the first character of a token, or a null pointer if
there is no token.

Description A sequence of calls to the strtok function breaks the string pointed to by sl into a
sequence of tokens, each of which is delimited by a character from the string pointed to
by s2. The first call in the sequence has sl as its first argument, and is followed by calls
with a null pointer as their first argument. The separator string pointed to by s2 may be
different from call to call.

The first call in the sequence searches the string pointed to by sl for the first character
that is not contained in the current separator string pointed to by s2. If no such character
is found, then there are no tokens in the string pointed to by s1 and the strtok function
returns a null pointer. If such character is found, it is the start of the first token.

The strtok function then searches from there for a character that is contained in the cur-
rent separator string. If no such character is found, the current token extends to the end
of the string pointed to by s1, and subsequent searches for a token will return a null
pointer. If such a character is found, it is overwritten by a null character, which termi-
nates the current token. The strtok function saves a pointer to the following character,
from which the next search for a token will start.

Each subsequent call, with a null pointer as the value of the first argument, starts
searching from the saved pointer and behaves as described above.

Example char %[10] ;
void main (){

strcpy(x, strtok("mikroEl", "Ek"));
strcpy(x, strtok(0, "kE"));

35 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

miqul: .

making it simple. ..

MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Conversions Library

mikroC Conversions Library provides routines for converting numerals to strings,
and routines for BCD/decimal conversions.

Library Routines

You can get text representation of numerical value by passing it to one of the fol-
lowing routines:

ByteToStr
ShortToStr
WordToStr
IntToStr
LongToStr
FloatToStr

Following functions convert decimal values to BCD (Binary Coded Decimal) and
vice versa:

Bcd2Dec
Dec2Bcd
Bcd2Decl6
Dec2Bcdl6

ByteToStr

Prototype void ByteToStr (unsigned short number, char *output);

Description Function creates an output string out of a small unsigned number (numerical value
less than 0x100). Output string has fixed width of 3 characters; remaining positions on
the left (if any) are filled with blanks.

Example unsigned short t = 24;
char txt[4] ;

/S
ByteToStr (t, txt); // txt 1is " 24" (one blank here)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @5@

MIKROE - € BaMPILER FOR MICRAOCHIP PIC MICROCONTROLLERS . W 98 simple. ..
ShortToStr
Prototype void ShortToStr (short number, char *output);
Description Function creates an output string out of a small signed number (numerical value less

than 0x100). Output string has fixed width of 4 characters; remaining positions on the
left (if any) are filled with blanks.

Example short t = -24;
char txt[5] ;
/S
ByteToStr (t, txt); // txt is " -24" (one blank here)
WordToStr
Prototype void WordToStr (unsigned number, char *output);
Description Function creates an output string out of an unsigned number (numerical value of

unsigned type). Output string has fixed width of 5 characters; remaining positions on
the left (if any) are filled with blanks.

Example unsigned t = 437;
char txt[6] ;
/S
WordToStr (t, txt); // txt is " 437" (two blanks here)
IntToStr
Prototype void IntToStr (int number, char *output);
Description Function creates an output string out of a signed number (numerical value of int

type). Output string has fixed width of 6 characters; remaining positions on the left (if
any) are filled with blanks.

Example int j = -4220;
char txt[7] ;
Yy
IntToStr(j, txt); // txt is " -4220" (one blank here)
- Vo T-

@@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroG

‘_":"_é_":‘?_ & slmple... b MIKROC - © COMPILER FOR MICROCHIP PIE MICROCONTROLLERS
LongToStr
Prototype void LongToStr (long number, char *output);
Description Function creates an output string out of a large signed number (numerical value of

long type). Output string has fixed width of 11 characters; remaining positions on the
left (if any) are filled with blanks.

Example long jj = -3700000;
char txt[12];
Y2
LongToStr (33, txt); // txt is " -3700000" (three blanks here)
FloatToStr
Prototype void FloatToStr (float number, char *output);
Description Function creates an output string out of a floating-point number. The output string

contains a normalized format of the number (mantissa between 0 and 1) with sign at the
first position. Mantissa has fixed format of six digits, 0.ddddd; i.e. there will always be
5 digits following the dot. The output string must be at least 13 characters long.

Example float ff = -374.2;
char txt[13];
/S

FloatToStr (ff, txt); // txt is "-0.37420e3"

Bcd2Dec
Prototype unsigned short Bcd2Dec (unsigned short bcdnum);
Returns Returns converted decimal value.
Description Converts 8-bit BCD numeral bcdnum to its decimal equivalent.
Example unsigned short a;
a— Bcd2Dec (0x52); // equals 52

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @@ﬂ

MIKRODC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

MIKROELEKTRONIKA: DEVELOPMENT TOOLS -

BOoks -

Dec2Bcd
Prototype unsigned short Dec2Bcd (unsigned short decnum);
Returns Returns converted BCD value.
Description Converts 8-bit decimal value decnum to BCD.
Example unsigned short a;
a: Dec2Bcd (52); // equals 0x52
Bcd2Dec16
Prototype unsigned Bcd2Decl6 (unsigned bcdnum) ;
Returns Returns converted decimal value.
Description Converts 16-bit BCD numeral bcdnum to its decimal equivalent.
Example unsigned a;
a= Bcd2Decl6 (1234) ; // equals 4660
Dec2Bcd16
Prototype unsigned Dec2Bcd (unsigned decnum) ;
Returns Returns converted BCD value.
Description Converts 16-bit decimal value decnum to BCD.
Example unsigned a;
a= Dec2Bcdl6(4660) ; // equals 1234
CTpage T

COMPILERS

miqul: .

Mé{«lﬂ? ctawkzﬂée... MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Trigonometry Library

mikroC implements fundamental trigonometry functions. These functions are
implemented as lookup tables, and return the result as integer, multiplied by 1000
and rounded up.

Library Routines

SinE3
CosE3
SinE3

Prototype int SinE3 (unsigned angle deg);

Returns Function returns the sine of input parameter, multiplied by 1000 (1E3) and rounded up
to the nearest integer. The range of return values is from -1000 to 1000.

Description Function takes parameter angle deg which represents angle in degrees, and returns its
sine multiplied by 1000 and rounded up to the nearest integer. The function is imple-
mented as a lookup table; maximum error obtained is *1.

Example res = SinE3(45); // result is 707

CosE3

Prototype int CosE3 (unsigned angle deg);

Returns Function returns the cosine of input parameter, multiplied by 1000 (1E3) and rounded
up to the nearest integer. The range of return values is from -1000 to 1000.

Description Function takes parameter angle deg which represents angle in degrees, and returns its
cosine multiplied by 1000 and rounded up to the nearest integer. The function is imple-
mented as a lookup table; maximum error obtained is +1.

Example res = CosE3(196); // result is -193

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @@3

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Sprint Library

Library for sprint functions.
Note: In addition to ANSI C standard mikroC provides limited versions sprinti,
sprintlt that take a less ROM,RAM and may be convinient in some cases for PIC.

Library Routines

sprintf
sprintl
sprinti

sprintf

Description: Function formats a series of strings and numeric values and stores the resulting
string in buffer.

Note: format string must be in the CONST area. sprintf function is not supported
for p12 and p16 PIC MCU families.

The fmtstr argument is a format string and may be composed of characters, escape
sequences, and format specifications. Ordinary characters and escape sequences
are copied to the buffer in the order in which they are interpreted. Format specifi-
cations always begin with a percent sign (%) and require additional arguments to
be included in the function call.

The format string is read from left to right. The first format specification encoun-
tered references the first argument after fmtstr and converts and outputs it using
the format specification. The second format specification accesses the second
argument after fmtstr, and so on. If there are more arguments than format specifi-
cations, the extra arguments are ignored. Results are unpredictable if there are not
enough arguments for the format specifications. Format specifications have the
following format:

% [flags] [width] [.precision] [{h]|]| L }] conversion type

Each field in the format specification can be a single character or a number which
specifies a particular format option. The conversion_type field is where a single
character specifies that the argument is interpreted as a character, a string, a num-
ber, or a pointer, as shown in the following table.

@@4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méut? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS
Conversion Type Argument Type Output Format
d int Signed decimal number
u unsigned int Unsigned decimal number
0 unsigned int Unsigned octal number
X unsigned int Unsigned hexadecimal number using
0123456789ABCEDF
X double Floating-point number using the format [-
] dddd.dddd
e double Floating-point number using the format [-

] d.dddde[-] dd

E double Floating-point number using the format [-
] d.ddddE[-] dd

g double Floating-point number using either e or £
format, whichever is more compact for the
specified value and precision

c int The int 1is converted to an unsigned char, and
the resulting character is written

S char * String with a terminating null character
p void * Pointer value, the X format is used
% none A % 1s written. No argument is converted. The

complete conversion specification shall be

o
]

oe

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @@5

mikro

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

The flags field is where a single character is used to justify the output and to print
+/- signs and blanks, decimal points, and octal and hexadecimal prefixes, as shown
in the following table.

Flags Meaning

- Left justify the output in the specified field width.

+ Prefix the output value with a + or - sign if the output is a signed type.

space ("") | Prefix the output value with a blank if it is a signed positive value.
Otherwise, no blank is prefixed

Prefixes a non-zero output value with 0, 0x, or 0X when used with o, x,
and X field types, respectively. When used with the e, E, f, g, and G
field types, the # flag forces the output value to include a decimal point.
The # flag is ignored in all other cases.

* Ignore format specifier.

The width field is a non-negative number that specifies the minimum number of
characters printed. If the number of characters in the output value is less than
width, blanks are added on the left or right (when the - flag is specified) to pad to
the minimum width. If width is prefixed with a 0, zeros are padded instead of
blanks. The width field never truncates a field. If the length of the output value
exceeds the specified width, all characters are output.

The precision field is a non-negative number that specifies the number of charac-
ters to print, the number of significant digits, or the number of decimal places. The
precision field can cause truncation or rounding of the output value in the case of
a floating-point number as specified in the following table.

3@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééoﬂ? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Flags Meaning of precision field

d, u, 0, x, X | The precision field is where you specify the minimum number of digits
that will be included in the output value. Digits are not truncated if the
number of digits in the argument exceeds that defined in the precision
field. If the number of digits in the argument is less than the precision
field, the output value is padded on the left with zeros.

f The precision field is where you specify the number of digits to the right
of the decimal point. The last digit is rounded.

e, E The precision field is where you specify the number of digits to the right
of the decimal point. The last digit is rounded.

g The precision field is where you specify the maximum number of signif-
icant digits in the output value.

c,C The precision field has no effect on these field types.

s The precision field is where you specify the maximum number of char-
acters in the output value. Excess characters are not output.

The optional characters h and | or L may immediately precede the conversion_type
to respectively specify short or long versions of the integer types d, i, u, o, x, and
X.

You must ensure that the argument type matches that of the format specification.
You can use type casts to ensure that the proper type is passed to sprintf.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @@7

MIKROE - C COMPILER FOR MICROCHIR PIC MICROCONTROLLERS _ ____________ ‘waeking & dmple...
sprintl
Prototype int sprintl (
char *buffer, /* storage buffer */
const char *fmtstr, /* format string */
) /* additional arguments */
Returns Function returns the number of characters actually written to buffer.
Description Same as sprintf, except it doesn't support float-type numbers.
sprinti
Prototype int sprinti (
char *buffer, /* storage buffer */
const char *fmtstr, /* format string */
) /* additional arguments */
Returns Function returns the number of characters actually written to buffer.
Description Same as sprintl, except it doesn't support long integer type numbers.
“TTpage e

@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méén? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

SPI Graphic LCD Library

mikroC provides a library for operating the Graphic LCD 128x64 via SPI. These
routines work with the common GLCD 128x64 (samsung ks0108).

Important: When using SPI Library routines, you are required to specify the actu-
al SPI module, either SPI1 or SPI2 in spi Glcd Init.

Note: spT_1nit () must be called before initializing SPI GLCD.

Library Routines

Basic routines:

Spi Glcd Init

Spi Glcd Set Side
Spi_Glcd Set Page
Spi Glcd Set X

Spi _Glcd Read Data
Spi Glcd Write Data

Advanced routines:

Spi Glcd Fill

Spi_ Glcd Dot

Spi Glcd Line

Spi Glcd V Line

Spi Glcd H Line
Spi_Glcd Rectangle
Spi Glcd Box

Spi Glcd Circle
Spi_Glcd Set Font
Spi Glcd Write Char
Spi Glcd Write Text
Spi_ Glcd Image

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @@@

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Spi_Glcd_Init

Prototype void SPI Glcd Init (char DeviceAddress, unsigned int * rstport,
unsigned int rstpin, unsigned int * csport, unsigned int cspin);

Description Initializes Graphic LCD 128x64 via SPI. RstPort and RstPin - Sets pin connected on
reset pin of spi expander. CSPort and CSPin - Sets pin connected on CS pin of spi
expander. device address - address of spi expander (hardware setting of A0, Al and
A2 pins (connected on VCC or GND) on spi expander).

Requires Note: SPI_Init () must be called before initializing SPI GLCD.
This procedure needs to be called before using other routines of SPI GLCD library.

Example Spi Glcd Init(0,&PORTC, 0, &PORTC, 1);

Spi_Glcd_Set_Side

Prototype void SPI Glcd Set Side(char x pos);

Description Selects side of GLCD, left or right. Parameter x specifies the side: values from 0 to 63
specify the left side, and values higher than 64 specify the right side. Use the functions
Spi Glcd Set Side, Spi_Glcd Set X, and Spi Glcd Set Page to specify an
exact position on GLCD. Then, you can use Spi Glcd Write Data or
Spi_Glcd Read Data on that location.

Requires GLCD needs to be initialized. See Spi Glcd Init.

Example Spi Glcd Select Side(0);
Spi Glcd Select Side(10);

@7@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

miqul: .

MIKROC -

Spi_Glcd_Set_Page

Prototype void Spi Glcd Set Page (char page);

Description Selects page of GLCD, technically a line on display; parameter page can be 0..7.
Requires GLCD needs to be initialized. See Spi Glcd Init.

Example Spi Glcd Set Page (5);

Spi_Glcd_Set_X

Prototype void SPI Glcd Set X (char x pos);

Description Positions to x dots from the left border of GLCD within the given page.
Requires GLCD needs to be initialized. See Spi Glcd Init.

Example Spi Glcd Set X (25);

Spi_Glcd_Read_Data

Prototype char Spi Glcd Read Data();

Returns One word from the GLCD memory.

Description Reads data from from the current location of GLCD memory. Use the functions
Spi_Glcd_Set Side, Spi_Glcd Set X, and Spi_ Glcd_Set Page to specify an
exact position on GLCD. Then, you can use Spi_Glcd Write Data or
Spi_Glcd_Read Data on that location.

Requires Reads data from from the current location of GLCD memory.

Example tmp = Spi Glcd Read Data;

C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

Spi_Glcd_Write_Data

Prototype void Spi Glcd Write Data(char data);

Description Writes data to the current location in GLCD memory and moves to the next location.
Requires GLCD needs to be initialized. See Spi Glcd Init.

Example Spi Glcd Write Data (data)

Spi_Glcd_Fill

Prototype void Spi Glcd Fill (char pattern);

Description Fills the GLCD memory with byte pattern. To clear the GLCD screen, use
Spi_Glcd Fill (0); to fill the screen completely, use Spi Glcd Fill (SFF).

Requires GLCD needs to be initialized. See Spi Glcd Init.

Example Spi Gled Fill(0); // Clear screen

Spi_Glcd_Dot

Prototype void Spi Glcd Dot (char x pos, char y pos, char color);

Description Draws a dot on the GLCD at coordinates (x, vy).Parameter color determines the dot
state: O clears dot, 1 puts a dot, and 2 inverts dot state.

Requires GLCD needs to be initialized. See Spi_Glcd Init.
Example Spi Glcd Dot (0, 0, 2); // Invert the dot in the upper left corner
Cpage e

372 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroG

Méé&? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Spi_Glcd_Line

Prototype void SPI Glcd Line(int x start, int y start, int x end, int
y_end, char color);

Description Draws a line on the GLCD from (x1, y1) to (x2, y2).Parameter color determines
the dot state: 0 draws an empty line (clear dots), 1 draws a full line (put dots), and 2
draws a “smart” line (invert each dot).

Requires GLCD needs to be initialized. See Spi Glcd Init.

Examp]e Spi Glcd Line(0, 63, 50, 0, 2);

Spi_Glcd_V_Line

Prototype void Spi Glcd V Line(char y start, char y end, char x pos, char
color);
Description Draws a vertical line on the GLCD from (X, y1) to (x, y2). Parameter color determines

the dot state: 0 draws an empty line (clear dots), 1 draws a solid line (put dots), and 2
draws a “smart” line (invert each dot).

Requires GLCD needs to be initialized. See Spi_Glcd Init.

Example Spi Glecd V Line(0, 63, 0, 1);

Spi_Glcd_H_Line

Prototype void Spi Glcd H Line(char x start, char x end, char y pos, char
color);
Description Draws a horizontal line on the GLCD from (x1, y) to (x2, y). Parameter color deter-

mines the dot state: 0 draws an empty line (clear dots), 1 draws a solid line (put dots),
and 2 draws a “smart” line (invert each dot).

Requires GLCD needs to be initialized. See Spi_Glcd Init.

Example Spi Glcd H Line(0, 127, 0, 1);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 373

MIKRODC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Spi_Glcd_Rectangle

Prototype void Spi Glcd Rectangle(char x upper left, char y upper left,
char x bottom right, char y bottom right, char color);

Description Draws a rectangle on the GLCD. Parameters (x1, y1) set the upper left corner,
(x2, y2) set the bottom right corner. Parameter color defines the border: 0 draws an
empty border (clear dots), 1 draws a solid border (put dots), and 2 draws a “smart” bor-
der (invert each dot).

Requires GLCD needs to be initialized. See Spi Glcd Init.

Example Spi Glcd Rectangle(10, 0, 30, 35, 1);

Spi_Glcd_Box

Prounype void Spi Glcd Box(char x upper left, char y upper left, char
x _bottom right, char y bottom right, char color);

Description Draws a box on the GLCD. Parameters (x1, y1) set the upper left corner, (x2, y2)
set the bottom right corner. Parameter color defines the fill: 0 draws a white box (clear
dots), 1 draws a full box (put dots), and 2 draws an inverted box (invert each dot).

Requires GLCD needs to be initialized. See Spi_Glcd Init.

Example Spi Glecd Box (10, 0, 30, 35, 1);

Spi_Glcd_Circle

Prototype void Spi Glcd Circle(int x center, int y center, int radius, char
color);

Description Draws a circle on the GLCD, centered at (x, y) with radius. Parameter color defines the
circle line: 0 draws an empty line (clear dots), 1 draws a solid line (put dots), and 2
draws a “smart” line (invert each dot).

Requires GLCD needs to be initialized. See Spi_Glcd Init.

Exanqﬂe Spi Glcd Circle(63, 31, 25, 1);

CTpage T

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

miqul: .

Mé{«”? ctawu«ﬂée... MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Spi_Glcd_Set_Font

Prototype void SPI Glcd Set Font (const char * activeFont, char aFontWidth,
char aFontHeight, unsigned int aFontOffs);

Description Sets the font for text display routines, Spi Glcd Write Char and

Spi Glcd Write Text. Font needs to be formatted as an array of byte. Parameter
font address specifies the address of the font; you can pass a font name with the @
operator. Parameters font width and font height specify the width and height of
characters in dots. Font width should not exceed 128 dots, and font height should not
exceed 8 dots. Parameter font offset determines the ASCII character from which the
supplied font starts. Demo fonts supplied with the library have an offset of 32, which
means that they start with space.

If no font is specified, Spi Glcd Write Char and Spi Glcd Write Text will use
the default 5x8 font supplied with the library. You can create your own fonts by follow-
ing the guidelines given in the file “GLCD_Fonts.dpas”. This file contains the default
fonts for GLCD, and is located in your installation folder, “Extra Examples” > “GLCD”.

Requires GLCD needs to be initialized. See Spi Glcd Init.

Example // Use the custom 5x7 font "myfont" which starts with space (32):
Spi Glcd Set Font (@myfont, 5, 7, 32);

Spi_Glcd_Write_Char

Prototype void SPI Glcd Write Char (char chrl, char x pos, char page num,
char color);

Description Prints character at page (one of 8 GLCD lines, 0..7), x dots away from the left border of
display. Parameter color defines the “fill”: 0 writes a “white” letter (clear dots), 1 writes
a solid letter (put dots), and 2 writes a “smart” letter (invert each dot).

Use routine Spi_Glcd Set Font to specify font, or the default 5x7 font (included
with the library) will be used.

Requires GLCD needs to be initialized, see Spi_Glcd Init. Use the Spi Glcd Set Font to
specify the font for display; if no font is specified, the default 5x8 font supplied with the
library will be used.
Example Spi Glcd Write Char('C', 0, 0, 1);
e page

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @75

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Spi_Glcd_Write_Text

Prototype void SPI Glcd Write Text (char text[], char x pos, char page num,
char color);

Description Prints text at page (one of 8 GLCD lines, 0..7), x dots away from the left border of
display. Parameter color defines the “fill”: O prints a “white” letters (clear dots), 1
prints solid letters (put dots), and 2 prints “smart” letters (invert each dot).

Use routine Spi Glcd_Set Font to specify font, or the default 5x7 font (included
with the library) will be used.

Requires GLCD needs to be initialized, see Spi_Glcd Init. Use the Spi Glcd Set Font to
specify the font for display; if no font is specified, the default 5x8 font supplied with the
library will be used.

Example Spi Glcd Write Text('Hello world!', 0, 0, 1);

Spi_Glcd_Image

Prototype void Spi Glcd Image (const char * image);

Description Displays bitmap image on the GLCD. Parameter image should be formatted as an array
of 1024 bytes. Use the mikroPascal’s integrated Bitmap-to-LCD editor (menu option
Tools > Graphic LCD Editor) to convert image to a constant array suitable for display

on GLCD.
Requires GLCD needs to be initialized. See Spi Glcd Init.
Example Spi Glcd Image (my image);

@7@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroc .

Mééw iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Library Example

The example demonstrates how to communicate to KS0108 GLCD via SPI module, using serial to
parallel convertor MCP23S17.

extern const unsigned short
truck bmp[] ;

char ii;
unsigned int jj;
char *someText;

void delay2S() {
Delay ms (2000);
}

void main () {
ADCON1 |= O0xO0F;

Spi Init(); // Initialize SPI module

Spi Glcd Init(0,&PORTC, 0, &PORTC, 1);
Spi Glcd Fill (0xAA);
delay23();
while (1) {
Spi Glcd Fill (0x00);
Spi Glcd Image(truck bmp);
delay235();

for(jj = 1; jj <= 40; ji++)
spi_Gled_Dot (3,33, 1)
delay25();

Spi Glcd Fill(0x00);
Spi Glcd Line (120, 1, 5,60, 1);

delay23();
Spi Glcd Line(12, 42, 5,60, 1);
delay2S5();

Spi Glcd Rectangle (12, 20, 93,57, 1);
delay23();

//continues. .

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @77

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W"? de'

//continues. .

Spi Glcd Line (120, 12, 12,60, 1);
delay2S3();

Spi Glcd H Line(5, 40, 6, 1);
delay2S3();

Spi Glcd Line(0, 12, 120, 60, 1);
Spi Gled V Line(7, 63, 127, 1);
delay2S3();

for(ii = 1; 1ii <= 10; 1ii++)
Spi Glcd Circle(63, 32, 3*ii, 1);

delay2S3();
Spi_Gled Box (12, 20, 70, 57, 2);
delay2S3();

Spi_Gled Fill (0x00);
Spi Glcd Set Font (&System3x6, 3, 6, 32);
someText = "SMALL FONT: 3X6";

Spi Glcd Write Text (someText, 20, 5, 1);

Spi Glcd Set Font (&FontSystem5x8, 5, 8, 32);
someText = "Large Font 5x8";

Spi Glcd Write Text (someText, 3, 4, 1);
delay2S3();

3? MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééw ct simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Hardware Connection

MCP23S17 -,
<
D011 GpBo GPA7]i [J
o1 z:: GPB1 GPA6]i 1 i
D2 3. 26 RST [1
GPB2 GPAS [} ———— i i
D3 4 H25 E
GPB3 GPA4 [i il
D4 5 024 RW
b5 el PB4 GPA3 s rs 1 -U 1
ol ores eemfl— — [CJ 1
GPB6 GPA1[] [O 1
D7 8 H21 cst vee [_— i
5 5L epa7 cPao [i i
9 +o4 veo |NTA:|T " H e (0] i
12
| Vi INTB [}— T1
ImReiml] vss == FL18 RCO Iz fene S I
Rc3 124 °° E 17 17‘-[osct i
RC513 scK Az 16 15 osez m I
sI A1 mmmrel [N J
pradiuy PV o [Ene — Ret I
O 18 [RCS 1]—23
L == . = RC3 RC4 |}
= i i
[1
Vee
Contrast
vce Adjustment vee
P1| g0
sK| [

FEFEEFEEEEEEEEEIEEEEE

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @7@

MIKRODC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Port Expander Library

The SPI Expander Library facilitates working with MCP23S17, Microchip’s SPI
port expander. The chip connects to the PIC according to the scheme presented
below.

Note: PIC need to have a hardware SPI module.

Note: spT_Tnit () must be called before initializing Port Expander

Library Routines

Expander Init
PortExpanderSelect
PortExpanderUnSelect
Expander Read Byte

Expander Write Byte
Expander Set Mode
Expander Read Array
Expander Write Array
Expander Read PortA
Expander Read PortB
Expander Read ArrayPortA
Expander Read ArrayPortB
Expander Write PortA
Expander Write PortB
Expander Set DirectionPortA
Expander Set DirectionPortB
Expander Set PullUpsPortA
Expander Set PullUpsPortB

Expander_Init

Prototype void Expander Init (char ModuleAddress, unsigned int * rstport,
unsigned int rstpin, unsigned int * csport, unsigned int cspin);
Description Establishes SPI communication with the expander and initializes the expander. RstPort
and RstPin - Sets pin connected on reset pin of spi expander. CSPort and CSPin - Sets
pin connected on CS pin of spi expander. moduleaddress - address of spi expander
(hardware setting of A0, A1 and A2 pins (connected on VCC or GND) on spi expander).
Requires This procedure needs to be called before using other routines of PORT Expander library.
SPI_Init () must be called before initializing Port Expander.
Example Expander Init (0, &PORTC, 0, &PORTC, 1);
“TTpage e

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroG

making & simple... MIKROE - G COMPILER FOR MIGROGHIP PIC MICROCONTROLLERS
PortExpanderSelect
Prototype void PortExpanderSelect;
Description Selects current port expander.
Requires PORT Expander must be initialized. See Expander Init.
Exan“ﬂe PortExpanderSelect;
PortExpanderUnSelect
Prototype void PortExpanderUnSelect;
Description Un-Selects current port expader.
Requires PORT Expander must be initialized. See Expander Init.
Exanqﬂe PortExpanderUnSelect;

Expander_Read_Byte

Prototype char Expander Read Byte (char ModuleAddress, char RegAddress);
Returns Byte read from port expander.

Description Function reads byte from port expander on ModuleAddress and port on RegAddress.
Requires PORT Expander must be initialized. See Expander Init.

Example Expander Read Byte(0,1);

Expander_Write_Byte

Prototype void Expander Write Byte (char ModuleAddress,char RegAddress, char
Data) ;
Returns Nothing.
Description This routine writes data to port expander on ModuleAddress and port on
RegAddress.
Requires PORT Expander must be initialized. See Expander Init.
Example Expander Write Byte(0,1,$FF);
e page

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 3@

MIKROD - C GOMPILER FOR MIGROCHIP PIC MICROCONTROLLERS e W _?_Wll
Expander_Set_Mode
Prototype void Expander Set Mode (char ModuleAddress, char Mode) ;
Returns Nothing.
Description Sets port expander mode on ModuleAddress.
Requires PORT Expander must be initialized. See Expander Init.
Example Expander Set Mode(1,0);

Expander_Read_ArrayPortA

Prototype void Expander Read ArrayPortA (char ModuleAddress, char NoBytes,
char DestArray[]):;

Returns Nothing.

Description This routine reads array of bytes (DestArray) from port expander on ModuleAddress
and portA. NoBytes represents number of read bytes.

Requires PORT Expander must be initialized. See Expander Init.

Exanqﬂe Expander Read PortA(0,1,data);

Expander_Read_Array

Prototype void Expander Read Array(char ModuleAddress, char StartAddress,
char NoBytes, char *DestArray);
Returns Nothing.
Description This routine reads array of bytes (DestArray) from port expander on ModuleAddress
and StartAddress. NoBytes represents number of read bytes.
Requires PORT Expander must be initialized. See Expander Init.
Exanqﬂe Expander Read Array(1l,1,5,data);
“TTpage e

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

miqul: .

Mé{«lﬂ? ctawkzﬂée... MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Expander_Write_Array

Prototype void Expander Write Array(char ModuleAddress, char StartAddress,
char NoBytes, char *SourceArray);

Returns Nothing.

Description This routine writes array of bytes (DestArray) to port expander on ModuleAddress
and StartAddress. NoBytes represents number of read bytes.

Requires PORT Expander must be initialized. See Expander Init.

Example Expander Write Array(l,1,5,data);

Expander_Read_PortA

Prototype char Expander Read PortA(char Address);

Returns Read byte.

Description This routine reads byte from port expander on Address and PortA.
Requires PORT Expander must be initialized. See Expander Init.
Example Expander Read PortA(l);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @3

MIKRODC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Expander_Read_ArrayPortB

Prototype void Expander Read ArrayPortB(char ModuleAddress, char NoBytes,
char DestArrayl]);

Returns Nothing.

Description This routine reads array of bytes (DestArray) from port expander on ModuleAddress
and portB. NoBytes represents number of read bytes.

Requires PORT Expander must be initialized. See Expander Init.

Example Expander Read PortB(0,8,data);

Expander_Write_PortA

Prototype void Expander Write PortA(char ModuleAddress, char Data);
Returns Nothing.

Description This routine writes byte to port expander on ModuleAddress and portA.
Requires PORT Expander must be initialized. See Expander Init.

Example Expander write PortA(3,$FF);

Expander_Write_PortB

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS -

Prototype void Expander Write PortB(char ModuleAddress, char Data);
Returns Nothing.
Description This routine writes byte to port expander on ModuleAddress and portB.
Requires PORT Expander must be initialized. See Expander Init.
Example Expander write PortB(2,S$FF);
Cpage e

COMPILERS

miqul: .

MIKROC -

Expander_Set_DirectionPortA

C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Prototype void Expander Set DirectionPortA(char ModuleAddress, char Data);
Description Set port expander PortA pin as input or output.

Requires PORT Expander must be initialized. See Expander Init.

Example Expander Set DirectionPortA (0, $FF);

Expander_Set_DirectionPortB

Prototype void Expander Set DirectionPortB(char ModuleAddress, char Data);
Description Set port expander PortB pin as input or output.

Requires PORT Expander must be initialized. See Expander Init.

Example Expander Set DirectionPortB (0, $FF);

Expander_Set_PullUpsPortA

Prototype void Expander Set PullUpsPortA(char ModuleAddress, char Data);
Description This routine sets port expander PortA pin as pullup or pulldown.

Requires PORT Expander must be initialized. See Expander Init.

Example Expander Set PullUpsPortA(0, SFF);

Expander_Set_PullUpsPortB

Prototype void Expander Set PullUpsPortB(char ModuleAddress, char Data);
Description This routine sets port expander PortB pin as pullup or pulldown.

Requires PORT Expander must be initialized. See Expander Init.

Example Expander Set PullUpsPortB(0, SFF);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W“? de-

Library Example

The example demonstrates how to communicate to port expander MCP23S17.

unsigned char 1i;

void main (){
\

ADCON1 |= 0xO0f;
TRISB = 0x00;
LATB = 0OxFF;

Delay ms (2000) ;

Spi Init(); // Initialize SPI module

Expander Init (0, &PORTC, 0, &PORTC, 1); // initialize port expander
Expander Set DirectionPortA(0, 0); // set expander's porta to be output
Expander Set DirectionPortB (0, 0xFF); // set expander's porta to be input

Expander Set PullUpsPortB (0, 0xFF);
// set pull ups to all of the expander's portb pins

i=20;
while (1) {
Expander Write PortA (0, i++); // write 1 to expander's porta

LATB = Expander Read PortB(0);
// read expander's portb and write it to PIC's LATB
Delay ms(20);

@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méém? ct simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Hardware Connection

MCP23s817
N\

1[GPBO GPA7(] 28 [-/ 1
2- 27 [Il
[] ePB1 GPAG [} —— i i
jE GPB2 GPA5 |7§: i i
;] ePes GPA4]247 0 Il
6[GPB4 GPA3 [|———— 0 -U I
—7[GPB5 GPA2]227 1 — Il
48[GPB6 GPA1 [——— vee (0 O Il
o GlePer cpao]z;— E 8 %
S ALy e B
I GND
TS R Siea &
.1 scK A2 [|— ———1osc2 (N il
RC513 . Al 16 | - ::[RCO N il
RCﬂ[[so 0 [15| —{|Rrc1 1P
: o] || ol i
. E= = RC3 LI
) =T i 1
I 1
e g EE
5 o & 6 5 0 O 6
1o o e gl
9 0 10 9 [10
=L I =L
vee PORTB — vee PORTA —
e page

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @7

MIKRODC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

SPI LCD Library (4-bit interface)

mikroC provides a library for communicating with commonly used LCD (4-bit

interface) via SPI interface. Figures showing HW connection of PIC and SPI LCD

are given at the end of the chapter.

Note: Spi_Init(); must be called before initializing SPI LCD.

Library Routines

Spi Lcd Config
Spi Lcd Init
Spi Lcd Out
Spi Lcd Out Cp
Spi Lcd Chr
Spi Lcd Chr Cp
Spi Lcd Cmd

Spi_Lcd_Config

Prototype void Spi Lcd Config(char DeviceAddress, unsigned char * rstport,
unsigned char rstpin, unsigned char * csport, unsigned char
cspin);

Description Initializes LCD via SPI interface with pin settings (Reset pin and Chip Select pin) you
specify.

Requires Spi_Init (); must be called before initializing SPI LCD.

Example Spi Lcd Config (0, &PORTB, 1, &PORTB, O0);

Cpage e

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méé&? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Prototype void Spi Lcd Init();

Description Initializes LCD at port with default pin settings (see the connection scheme at the end
of the chapter).

Requires Spi_Init(); must be called before initializing SPI LCD.

Example Spi Led Init();

Spi_Lcd_Out

Prototype void Spi Lcd Out (char row, char column, char *text);

Description Prints text on LCD at specified row and column (parameters row and col). Both string
variables and literals can be passed as text.

Requires Port with LCD must be initialized. See Spi Lcd Configor Spi Led Init.

Example Spi Lcd Out(l, 3, "Hello!");

Spi_Lcd_Out_Cp

Prototype void Spi Lcd Out CP(char *text);

Description Prints text on LCD at current cursor position. Both string variables and literals can be
passed as text.

Requires Port with LCD must be initialized. See Spi Lcd Configor Spi Led Init.
Example Spi Lcd Out Cp("Here!"); // Print "Here!" at current cursor posi-
tion

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @@

MIKRODC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Spi_Lcd_Chr
Prototype void Spi Lcd Chr(char Row, char Column, char Out Char);
Description Prints character on LCD at specified row and column (parameters row and col).
Both variables and literals can be passed as character.
Requires Port with LCD must be initialized. See Spi Lcd Config or Spi Led Init.
Example Spi Lcd Chr(2, 3, "i");

Spi_Lcd _Chr_Cp

Prototype void Spi Lcd Chr CP(char Out Char);

Description Prints character on LCD at current cursor position. Both variables and literals can be
passed as character.

Requires Port with LCD must be initialized. See Spi Lcd Config or Spi Led Init.

Example Spi Lcd Chr Cp("e"); // Print "e" at current cursor position

Spi_Lcd_Cmd

Prototype void Spi Lcd Cmd(char out char);
Description Sends command to LCD. You can pass one of the predefined constants to the function.
The complete list of available commands is shown below.
Requires Port with LCD must be initialized. See Spi Lcd Config or Spi Led Init.
Example Spi Lcd Cmd(LCD_Clear); // Clear LCD display
“TTpage e

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

miqul: .

Mé{«lﬂ? ctawkzﬂée... MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

LCD Commands

LCD Command Purpose
LCD_FIRST ROW Move cursor to 1st row
LCD_SECOND_ROW Move cursor to 2nd row
LCD_THIRD ROW Move cursor to 3rd row
LCD_FOURTH_ ROW Move cursor to 4th row
LCD_CLEAR Clear display

Return cursor to home position, returns a shifted display to original posi-

LCD_RETURN HOME . . .
- - tion. Display data RAM is unaffected.

LCD_CURSOR_OFF Turn off cursor
LCD_UNDERLINE ON Underline cursor on
LCD_BLINK CURSOR ON Blink cursor on

LCD _MOVE CURSOR_LEFT Move cursor left without changing display data RAM

Lcd Move Cursor Right | Move cursor right without changing display data RAM

LCD_TURN ON Turn LCD display on

LCD_TURN OFF Turn LCD display off

LCD_SHIFT LEFT Shift display left without changing display data RAM
LCD_SHIFT RIGHT Shift display right without changing display data RAM

Library Example (default pin settings)

char *text = "mikroElektronika";
void main () {
Spi Init(); // initialize spi
Spi Lecd Init(); // initialize lcd over spi interface
Spi Lecd Cmd (LCD_CLEAR) ; // Clear display
Spi Lcd Cmd (LCD_CURSOR OFF); // Turn cursor off
Spi Lcd Out(l,6, "mikroE"); // Print text to LCD, 1lst row, 7th column
Spi Led Chr CP('!'); // append !
Spi Lcd Out (2,0, text); // Print text to LCD, 2nd row, 3rd column
Spi Lcd Out (3,1, "mikroE"); // for lcd with more than two raws
Spi Lcd Out (4,15, "mikroE") ; // for lcd with more than two raws

Y/~

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @@ﬂ

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W“? “Wu:

Hardware Connection

MCP23S17
1 ~ 28 i -/ i
—] ePBo GPA7 [|—
—2[GPB1 GPAG]i [l 1
RS 37 26 [l 1
[] ePB2 GPAS5 [|— i i
E 4 25
[] cPB3 GPA4 [|— 0 il
D4 5r 24 v
05 ol GPB4 GPA3]? 0 il
————— [|ePBs GPA2[|— I — I
D6 7 22 i 0 i
—— | ePB6 GPA1 [[—
D7 8 21 vee [- 1
ﬁ[GPB7 GPAO [} i i
9 ——f] vep INTA]? :; vee o0 i
—Rernl vss I8 _|:| 8 RCO [F——31]eNno M i
—— ol o RESET [—zosct il
RC5 13[scK Az] 16 15 [joscz m I
1 1 ——|Rrco I
Rca1a AT 8 Mhz — % fre N]
0 i HOH i Ros [
-+ ES . == ﬂ[RC3 RC4]23
= I I
{ 1

vce
Contrast
zl‘z | Adjustment

@@2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méut? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

SPI LCD8 (8-bit interface) Library

mikroC provides a library for communicating with commonly used 8-bit interface
LCD (with Hitachi HD44780 controller) via SPI Interface. Figures showing HW
connection of PIC and SPI LCD are given at the end of the chapter.

Note: Spi_Init(); must be called before initializing SPI LCDS.

Library Routines

Spi Lcd8 Config
Spi Lcd8 Init
Spi Lcd8 Out
Spi Lcd8 Out Cp
Spi Lcd8 Chr
Spi Lcd8 Chr Cp
Spi Lcd8 Cmd

Spi_Lcd8_Config

Prototype void Spi Lcd8 Config(char DeviceAddress, unsigned char * rstport,
unsigned char rstpin, unsigned char * csport, unsigned char
cspin);

Description Initializes LCD via SPI interface with pin settings (Reset pin and Chip Select pin) you

specify.
Requires Spi_Init(); must be called before initializing SPI LCDS.
Example Spi Lcd8 Config (0, &PORTB, 1, &PORTB, 0);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @@3

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

Spi_Lcd8_Init

Prototype void Spi Lcd8 Init();

Description Initializes LCD at Control port (ctrlport) and Data port (dataport) with default pin set-
tings (see the connection scheme at the end of the chapter).

Requires Spi_Init (); must be called before initializing SPI LCD8.

Example Spi_Lcd8 Init();

Spi_Lcd8_Out

Prototype void Spi Lcd8 Out (unsigned short row, unsigned short column, char
*text);
Description Prints text on LCD at specified row and column (parameters row and col). Both string

variables and literals can be passed as text.

Requires Ports with LCD must be initialized. See Spi Lcd8 Configor Spi Lcd8 Init.

Example Spi Lcd8 Out(l, 3, "Hello!"); // Print "Hello!" at line 1, char 3

Spi_Lcd8 Out_Cp

Prototype void Spi Lcd8 Out CP(char *text);

Description Prints text on LCD at current cursor position. Both string variables and literals can be
passed as text.

Requires Ports with LCD must be initialized. See Spi Lcd8 Configor Spi Lcd8 Init.
Example Spi Lcd8 Out Cp("Here!"); // Print "Here!" at current cursor
position
- Vo T-

3@4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

ikroC
2 'z 9 MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Spi_Lcd8_Chr

Prototype void Spi Lcd8 Chr (unsigned short row, unsigned short column, char
out char);

Description Prints character on LCD at specified row and column (parameters row and col).
Both variables and literals can be passed as character.

Requires Ports with LCD must be initialized. See Spi Lcd8 Config or Spi Lcd8 Init.

Example Spi Lcd8 Out(2, 3, "i"); // Print "i" at line 2, char 3

Spi_Lcd8 Chr_Cp

Prototype void Spi Lcd8 Chr CP(char out char);

Description Prints character on LCD at current cursor position. Both variables and literals can be
passed as character.

Requires Ports with LCD must be initialized. See Spi Lcd8 Config or Spi Lcd8 Init.

Example Spi Lcd8 Chr Cp("e"); // Print "e" at current cursor position

Spi_Lcd8_Cmd

Prototype void Spi Lcd8 Cmd(char out char);

Description Sends command to LCD. You can pass one of the predefined constants to the function.
The complete list of available commands is shown below.

Requires Ports with LCD must be initialized. See Spi Lcd8 Configor Spi_ Lcd8 Init.

Example Spi Lcd8 Cmd(LCD Clear); // Clear LCD display

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS

MIKROC

LCD Commands

- C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

LCD Command

Purpose

LCD_FIRST ROW

Move cursor to 1st row

LCD_SECOND ROW

Move cursor to 2nd row

LCD_THIRD ROW

Move cursor to 3rd row

LCD_FOURTH ROW

Move cursor to 4th row

LCD_CLEAR

Clear display

LCD_RETURN_HOME

Return cursor to home position, returns a shifted display to original posi-
tion. Display data RAM is unaffected.

LCD CURSOR OFF

Turn off cursor

LCD_UNDERLINE ON

Underline cursor on

LCD_BLINK CURSOR ON

Blink cursor on

LCD_MOVE CURSOR LEFT

Move cursor left without changing display data RAM

Lcd Move Cursor Right

Move cursor right without changing display data RAM

LCD_TURN_ON

Turn LCD display on

LCD_TURN OFF

Turn LCD display off

LCD_SHIFT LEFT

Shift display left without changing display data RAM

LCD_SHIFT RIGHT

Shift display right without changing display data RAM

Library Example (default pin settings)

char *text =

void main () {
Spi Init();
Spi Lcd8 Init();

Spi_Lcd8 Cmd (LCD_CLEAR) ;
Spi Lcd8 Cmd (LCD CURSOR OFF) ;

"mikroE";

// initialize spi interface

// intialize lcd in 8bit mode via spi
// Clear display

// Turn cursor off

Spi Lcd8 Out(l,6, text); // Print text to LCD, 1st row, 7th column...
Spi Lcd8 Chr_CP (' 1Y) ; // append '!'

Spi Lcd8 Out (2, "mikroelektronika");// Print text to LCD, 2nd row, 3rd column...
Spi Lcd8 Out (3, text); // for lcd modules with more than two raws
Spi Lcd8 Out (4, 15 text) ; // for lcd modules with more than two raws

Y/ /!

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Mééw ct simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Hardware Connection

MCP23S17 7
%
Do 1[GPBO GPA7]ﬂ []
D1 2- 27 [I
[] ePB1 GPA6 [|—
234 GPB2 GPA5]i I I
D3 47 25 RS (0 Il
Pvar] GPB3 GPA4]247 i il
o5 6[GPB4 GPA3 [|— 0 -U I
—|D‘5 {Jopes oAz '722 E 1l —= Il
—— | ePB6 GPA1 [|— i O I
D7 8 21 vee [- Il
—————|ePB7 GPAO[}——
g ° 2 nhee €0
g }—10[VDD INTA :|T T jvee i
| RC1 11[vss _INTB _|:| 18 RCO '||—13[GND 1]
m[cs RESET || —a1]osct N I
RC513 ScK Az 16 15 osez m I
(] Igren r[
—] s Al[}F—t {|Rco 1
RC414 15 8 Mhz — 8 flret N il
—1] so A0 b 24
= HOH 1 U RCS 1o
<, T —1|RrRc3 RC4]
= i I
I 1
vce
Contrast
P41 Adjustment
5K| |«
= ® EEETFEFFEEREEFEF
page

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @@7

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

SPI T6963C Graphic LCD Library

mikroC for PIC provides a library for drawing and writing on Toshiba T6963C
Graphic LCD (various sizes) via SPI interface.

Note: Spi_Init; must be called before initializing SPI LCD.

Library Routines

Spi T6963C Config

Spi T6963C writeData

Spi T6963C writeCommand
Spi T6963C_setPtr

Spi T6963C _waitReady

Spi T6963C fill

Spi T6963C _dot

Spi T6963C write char
Spi T6963C write text
Spi T6963C line

Spi T6963C_rectangle

Spi T6963C box

Spi T6963C circle

Spi T6963C_image

Spi T6963C_sprite

Spi T6963C_set cursor
Spi T6963C clearBit

Spi T6963C_setBit

Spi T6963C negBit

Spi T6963C displayGrPanel
Spi T6963C displayTxtPanel
Spi T6963C_setGrPanel
Spi T6963C_setTxtPanel
Spi T6963C panelFill

Spi T6963C grFill

Spi T6963C txtFill

Spi T6963C cursor height
Spi T6963C _graphics

Spi T6963C_ text

Spi T6963C _cursor

Spi T6963C cursor blink
Spi T6963C Config 240x128
Spi T6963C Config 240x64

@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroG

Mééoﬂ? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Spi_T6963C_Config

Prototype void Spi T6963C Config(unsigned int width, unsigned char height,
unsigned char fntW, char DeviceAddress, unsigned char * rstport,
unsigned char rstpin, unsigned char * csport, unsigned char
cspin, unsigned char wr, unsigned char rd, unsigned char cd,
unsigned char rst);

Description Initalizes the Graphic Lcd controller. This function must be called before all Spi T6963C
Library Routines.

width - Number of horizontal (x) pixels in the display.

height - Number of vertical (y) pixels in the display.

fntW - Font width, number of pixels in a text character, must be set accordingly to the
hardware.

data - Address of the port on which the Data Bus is connected.

cntrl - Address of the port on which the Control Bus is connected.

wr - |WR line bit number in the *cntrl port.

rd - IRD line bit number in the *cntrl port.

cd - !CD line bit number in the *cntrl port.

rst - IRST line bit number in the *cntrl port.

DeviceAddress - Device Address.

Display RAM :

The library doesn't know the amount of available RAM.

The library cuts the RAM into panels : a complete panel is one graphics panel followed
by a text panel, The programer has to know his hardware to know how much panel he

has.
Requires Spi_Init (); must be called before initializing SPI Toshiba T6963C Graphic LCD.
Example Spi T6963C_Config (240, 64, 8, &PORTB, 1, &PORTB, 0, O, 1, 3, 4,
i

*

init display for 240 pixel width and 64 pixel height

8 bits character width

reset pin on PORTB.1

chip select pin on PORTB.O0

bit 0 is !WR

bit 1 is !RD

bit 3 is !CD

bit 4 is RST

chip enable, reverse on, 8x8 font internaly set in library
device address is 0

%% ok % ok %k % %

*
~N

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS @@@

MIKRODC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Spi_T6963C_writeData

Prototype void Spi T6963C writeData (unsigned char data);
Description Routine that writes data to Spi T6963C controller.

Requires GLCD needs to be initialized, see Spi_T6963C_Config.
Example Spi T6963C writeData (AddrL);

Spi_T6963C_writeCommand

Prototype void Spi T6963C writeCommand (unsigned char data);
Description Routine that writes command to Spi T6963C controller

Requires GLCD needs to be initialized, see Spi_T6963C_Config.

Example Spi T6963C writeCommand (T6963C_CURSOR POINTER SET) ;

Spi_T6963C_setPtr

Prototype void Spi T6963C setPtr (unsigned int addr, unsigned char t);
Description This routine sets the memory pointer p for command c.

Requires GLCD needs to be initialized, see Spi_T6963C_Config.

Example Spi T6963C setPtr(T6963C grHomeAddr + start, T6963C ADDRESS POINT-

ER_SET) ;

Spi_T6963C_waitReady

Prototype void Spi T6963C waitReady();
Description This routine pools the status byte, and loops until ready.
Requires GLCD needs to be initialized, see Spi_T6963C_Config.
Example Spi T6963C waitReady();
“TTpage e

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

miqul: .

Mé{«”? ctawu«ﬂle... MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Spi_T6963C_fill

Prototype void Spi T6963C fill (unsigned char data, unsigned int start,
unsigned int len);

Description This routine fills length with bytes to controller memory from start address.

Requires GLCD needs to be initialized, see Spi_T6963C_Config.

Example Spi T6963C fill (0x33,0x00FF,0x000F) ;

Spi_T6963C_dot

Prototype void Spi T6963C dot (int x, int y, unsigned char color);

Description This routine sets current graphic work panel. It sets the pixel dot (x0, y0).
pcolor = T6963C [WHITE[BLACK].

Requires GLCD needs to be initialized, see Spi_T6963C_Config.

Example Spi T6963C dot (x0, y0, pcolor);

Spi_T6963C_write_char

Prototype void Spi T6963C write char (unsigned char c, unsigned char x,
unsigned char y, unsigned char mode);

Description This routine sets current text work panel.
It writes char ¢ row x line y.
mode = T6963C_ROM_MODE_[OR|EXOR|AND]

Requires GLCD needs to be initialized, see Spi_T6963C_Config.

Example Spi T6963C write char ("A",22,23,AND);

Spi_T6963C_write_text

Prototype void Spi T6963C write text (unsigned char *str, unsigned char x,
unsigned char y, unsigned char mode) ;

Description This sets current text work panel.
It writes string str row x line .
mode = T6963C ROM_MODE [OR|EXOR|AND]

Requires GLCD needs to be initialized, see Spi_T6963C_Config.

Example Spi T6963C write text ("GLCD LIBRARY DEMO, WELCOME !", 0, O,
T6963C_ROM MODE_XOR) ;

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 4@ﬂ

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W de-

Spi_T6963C_line

Prototype void Spi T6963C line(int px0, int py0, int pxl, int pyl, unsigned
char pcolor);

Description This routine current graphic work panel.
It's draw a line from (x0, y0) to (x1, y1).
pcolor = T6963C [WHITE[BLACK]

Requires GLCD needs to be initialized, see Spi_T6963C_Config.

Example Spi T6963C line (0, 0, 239, 127, T6963C WHITE);

Spi_T6963C_rectangle

Prototype void Spi T6963C rectangle(int x0, int yO, int x1, int yl,
unsigned char pcolor);

Description It sets current graphic work panel.
It draws the border of the rectangle (x0, y0)-(x1, y1).
pcolor = T6963C_[WHITE[BLACK].

Requires GLCD needs to be initialized, see Spi T6963C_Config.

Example Spi T6963C rectangle (20, 20, 219, 107, T6963C WHITE);

Spi_T6963C_box

Prototype void Spi T6963C box(int x0, int y0, int x1, int yl, unsigned char
pcolor) ;
Description This routine sets current graphic work panel.

It draws a solid box in the rectangle (x0, y0)-(x1, y1).
pcolor = T6963C_[WHITE[BLACK].

Requires GLCD needs to be initialized, see Spi_T6963C_Config.
Example Spi T6963C box (0, 119, 239, 127, T6963C_WHITE) ;
CTpage T

4@2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroG

Méé&? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Spi_T6963C_circle

Prototype void Spi T6963C circle(int x, int y, long r, unsigned char pcol-
or);
Description This routine sets current graphic work panel.

It draws a circle, center is (X, y), diameter is r.
pcolor = T6963C [WHITE[BLACK]

Requires GLCD needs to be initialized, see Spi_T6963C_Config.

Example Spi T6963C circle (120, 64, 110, T6963C WHITE);

Spi_T6963C_image

Prototype void Spi T6963C _image (const char *pic);

Description This routine sets current graphic work panel :

It fills graphic area with picture pointer by MCU.

MCU must fit the display geometry.

For example : for a 240x128 display, MCU must be an array of (240/8)*128 = 3840

bytes .
Requires GLCD needs to be initialized, see Spi_T6963C_Config.
Example Spi T6963C image (my image);

Spi_T6963C_sprite

Prototype void Spi T6963C sprite (unsigned char px, unsigned char py, const
char *pic, unsigned char sx, unsigned char sy);

Description This routine sets current graphic work panel.

It fills graphic rectangle area (px, py)-(px + sx, py + sy) witch picture pointed by MCU.
Sx and sy must be the size of the picture.

MCU must be an array of sx*sy bytes.

Requires GLCD needs to be initialized, see Spi_T6963C_Config.

Example Spi T6963C sprite(76, 4, einstein, 88, 119); // draw a sprite

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 4@3

MIKROC

- C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Spi_T6963C_set_cursor

Prototype void Spi T6963C set cursor (unsigned char x, unsigned char y);
Description This routine sets cursor row x line y.

Requires Ports must be initialized. See Spi_T6963C_init.

Example Spi T6963C_set cursor (cposx, cCposy):;

Spi_T6963C_

clearBit

Prototype void Spi T6963C clearBit (char b);
Description Clear control bit.

Requires Ports must be initialized. See Spi_T6963C_init.
Example Spi T6963C clearBit (b);

Spi_T6963C_

setBit

Prototype void Spi T6963C setBit (char b);

Description Set control bit.

Requires GLCD needs to be initialized, see Spi_T6963C_Config.
Example Spi T6963C setBit (b);

Spi_T6963C_

negBit

MIKROELEKTRONIKA: DEVELOPMENT TOOLS -

BOoks -

Prototype void Spi T6963C negBit (char b);
Description Neg control bit.
Requires GLCD needs to be initialized, see Spi_T6963C_Config.
Example Spi T6963C negBit (b);
Cpage e

COMPILERS

mikroG

Méén? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Spi_T6963C_displayGrPanel

Prototype void Spi T6963C waitReady(unsigned int n);
Description Display graphic panel number n.

Requires GLCD needs to be initialized, see Spi_T6963C_Config.
Example Spi T6963C displayGrPanel (n);

Spi_T6963C_displayTxtPanel

Prototype void Spi T6963C displayTxtPanel (unsigned int n);
Description Display text panel number n.

Requires GLCD needs to be initialized, see Spi_T6963C Config.
Example Spi T6963C displayTxtPanel (n);

Spi_T6963C_setGrPanel

Prototype void Spi T6963C setGrPanel (unsigned int n);
Description Compute graphic start address for panel number n.
Requires GLCD needs to be initialized, see Spi_T6963C_Config.
Example Spi T6963C_setGrPanel (n);

Spi_T6963C_setTxtPanel

Prototype void Spi T6963C setTxtPanel (unsigned int n);
Description Compute text start address for panel number n.

Requires GLCD needs to be initialized, see Spi_T6963C_Config.
Example Spi T6963C setTxtPanel (n);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS

MIKROEG - C GOMPILER FOR MICROCHIP Pl E‘_’:‘l‘E'EE'_EE'E‘_TFE'_'-l-_E_"?___________________________W_?_W:
Spi_T6963C_panelFill
Prototype void Spi T6963C panelFill (unsigned int v);
Description Fill full #n panel with v bitmap (0 to clear).
Requires GLCD needs to be initialized, see Spi T6963C_Config.
Example Spi T6963C panelFill(v);
Spi_T6963C_grFill
Prototype void Spi T6963C grFill (unsigned int v);
Description Fill graphic #n panel with v bitmap (0 to clear).
Requires GLCD needs to be initialized, see Spi_T6963C_Config.
Example Spi T6963C grFill (v);
Spi_T6963C_txtFill
Prototype void Spi T6963C txtFill (unsigned int v);
Description Fill text #n panel with char v + 32 (0 to clear).
Requires GLCD needs to be initialized, see Spi_T6963C_Config.
Example Spi T6963C txtFill(v);
Spi_T6963C_cursor_height
Prototype void Spi T6963C cursor height (unsigned int n);
Description Set cursor size.
Requires GLCD needs to be initialized, see Spi_T6963C_Config.
Example Spi T6963C cursor height(n);
CTpage T
MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

miqul: .

Mé{«”? ctawu«ﬂle... MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Spi_T6963C_graphics

Prototype void Spi T6963C graphics (unsigned int n);

Description Set graphics on/off.

Requires GLCD needs to be initialized, see Spi_T6963C_Config.

Example Spi T6963C graphics(1);

Spi_T6963C_text

Prototype void Spi T6963C text (unsigned int n);
Description Set text on/off.

Requires GLCD needs to be initialized, see Spi_T6963C Config.
Example Spi T6963C text(1l);

Spi_T6963C_cursor

Prototype void Spi T6963C cursor (unsigned int n);
Description Set cursor on/off.

Requires GLCD needs to be initialized, see Spi_T6963C_Config.
Example Spi T6963C_cursor(l);

Spi_T6963C_cursor_blink

Prototype void Spi T6963C cursor blink(unsigned int n);
Description Set cursor blink on/off.

Requires GLCD needs to be initialized, see Spi_T6963C_Config.
Example Spi T6963C cursor blink(0);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 4@7

MIKROD - C GOMPILER FOR MIGROCHIP PIC MICROCONTROLLERS e W o simple...
Spi_T6963C_Config_240x128
Prototype procedure Spi T6963C Config 240x128();
Description Initialize T6963C based GLCD (240x128 pixels) with default settings for mE GLCD's.
Requires Spi_Init; must be called before initializing SPI Toshiba T6963C Graphic LCD.
Example Spi T6963C Config 240x128();

Spi_T6963C_

Config_240x64

Prototype procedure Spi T6963C Config 240x64();

Description Set graphics on/off.

Requires Initialize T6963C based GLCD (240x64 pixels) with default settings for mE GLCD's.
Example Spi T6963C_Config 240x64 () ;

Library Example

The following drawing demo tests advanced routines of SPI1 T6963C GLCD
library.

#include "Spi T6963C.h"
extern const char mc[] ;
extern const char einstein[] ;

void main (void)

{

unsigned char panel ; // current panel

unsigned int i // general purpose register
unsigned char curs ; // cursor visibility
unsigned int cposx, cposy ; // cursor x-y position
TRISC = 0 ; // port C 1is output only
PORTC = 0b00000000 ; // chip enable, reverse on, 8x8 font

//continues. ..

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méém? ct simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

//continues...

/
init display for 240 pixel width and 128 pixel height
8 bits character width

data bus on PORTD

control bus on PORTC

bit 3 is !WR

bit 2 is !RD

bit 1 is C!D

bit 5 is RST

%% ok % ok % ok % %k

*
~N

Spi Init();
Spi T6963C Init 240x128();

Vs
* enable both graphics and text display at the same time
*/

Spi T6963C graphics(1l) ;
Spi T6963C text(l)

panel = 0 ;

i=20;

curs = 0 ;

cposx = cposy = 0 ;

Va3
* text messages

*/

Spi T6963C write text (" GLCD LIBRARY DEMO, WELCOME !", O,
0, Spi T6963C_ROM MODE XOR) ;

Spi T6963C write text (" EINSTEIN WOULD HAVE LIKED mC", O,
15, Spi T6963C_ROM MODE XOR) ;

J*
* cursor
*/

Spi T6963C cursor height(8) ; // 8 pixel height

Spi_T6963C_set_cursor(0, 0) ; // move cursor to top left
Spi T6963C cursor(0) ; // cursor off

//continued. ..

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 4@@

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W"? de-

//continues...

Vs
* draw rectangles

*/

Spi T6963C rectangle(0, 0, 239, 127, Spi T6963C WHITE) ;

Spi T6963C rectangle (20, 20, 219, 107, Spi T6963C WHITE) ;
Spi T6963C rectangle (40, 40, 199, 87, Spi T6963C WHITE) ;
Spi T6963C rectangle (60, 60, 179, 67, Spi T6963C WHITE) ;

Vs
* draw a cross

*/

Spi T6963C line(0, 0, 239, 127, Spi T6963C WHITE) ;
Spi T6963C line(0, 127, 239, 0, Spi T6963C WHITE) ;

J*
* draw solid boxes

*/

Spi T6963C box (0, 0, 239, 8, Spi T6963C WHITE) ;
Spi T6963C box (0, 119, 239, 127, Spi T6963C WHITE) ;

J*
* draw circles

*/

Spi_T6963C_circle (120, 64, 10, Spi_T6963C_WHITE) ;
Spi T6963C circle (120, 64, 30, Spi T6963C WHITE) ;
Spi_T6963C_circle (120, 64, 50, Spi_T6963C_WHITE) ;
Spi_T6963C_circle (120, 64, 70, Spi_T6963C_WHITE) ;
Spi T6963C circle (120, 64, 90, Spi T6963C WHITE) ;
Spi T6963C circle (120, 64, 110, Spi T6963C WHITE) ;
Spi_T6963C_circle (120, 64, 130, Spi_T6963C_WHITE) ;

// draw a sprite

Spi T6963C sprite(76, 4, einstein, 88, 119) ;

Spi T6963C setGrPanel(l) ; // select other graphic panel
// fill the graphic screen with a picture

Spi T6963C image (mc) ;

//continued. ..

4ﬂ @ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méém? ct simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

//continues...

for(;;)

{

// 1f RB1 is pressed, toggle the display between graphic panel 0
// and graphic 1

if (PORTB & 0b00000010)
{
panel++ ;
panel &= 1 ;
Spi T6963C displayGrPanel (panel) ;
Delay ms (300) ;
}

// 1f RB2 is pressed, display only graphic panel
else if (PORTB & 0b00000100)

{

Spi T6963C graphics(1l) ;

Spi T6963C text(0) ;

Delay ms(300) ;

}

// 1f RB3 is pressed, display only text panel

else if (PORTB & 0b00001000)
{
Spi T6963C graphics(0) ;
Spi T6963C text(l) ;
Delay ms(300) ;
}

// 1f RB4 is pressed, display text and graphic panels

else if (PORTB & 0b00010000)
{
Spi T6963C graphics(1l) ;
Spi T6963C text(l) ;
Delay ms(300) ;
}

//continued. ..

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 4ﬂ ﬂ

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W"? de-

//continues...

// 1if RB5 is pressed, change cursor
else if (PORTB & 0b00100000)
{
curs++ ;
if (curs == 3) curs = 0 ;
switch (curs)

{

case 0:
// no cursor
Spi T6963C cursor(0) ;
break ;

case 1:

// blinking cursor
Spi T6963C cursor(l) ;
Spi T6963C cursor blink(1l) ;
break ;
case 2:
// non blinking cursor
Spi T6963C cursor(l) ;

Spi T6963C cursor blink(0) ;

break ;
}
Delay ms(300) ;
}
Vs
* move cursor, even 1f not visible
*/
cposx++
if (cposx == Spi T6963C txtCols)
{
cposx = 0 ;
cposy++ ;
if (cposy == Spi T6963C grHeight / Spi T6963C_ CHARACTER HEIGHT)

{
cposy = 0 ;
}

}
Spi T6963C set cursor(cposx, cposy) ;

Delay ms(100) ;
}

4ﬂ 2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méém? ct simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Hardware Connection MCP23517 —
Do 1 U 28 i i
GPB0 GPA7]_
D1 21 027 Fs i i
o2 3l GPB1 ePas [— = i i
GPB2 GPAS [———
D3 4 - 25 RST [1]
GPB3 GPA4 (] i i
D4 5 © 24 CE
GPB4 GPA3[] (] U i
D5 6 H23 E —
e 71 °78° ePaz[l—— (] 1]
GPB6 GPA1 [} I n 1
D7 s - 21 Rs vee (] -_— i
5 5L ep7 ePao [} i i
¢>J o4 vep INTA]? " A ee (0] q
12
| INTB [— T1
l RC1 114 VS8 —— [18 RCO 'll_w[GND I
cs RESET [} —{|osc1 .h 1
RC3 12 17 14
Res 134 oK Az]T 15 [[gz:z N %
Reaad o atll 15 8 Mhz — 18 Arer N il
so A0 [— 24
HOH 18 (] RC5 I
= = = RC3 Rc4J
== ! i
[1
Contrast
Adjustment
P1 BN
10K
—
1 A
vCcC

FEFFFEEFFEFFFEEFFEFE

Toshiba T6963C Graphic LCD (240x128)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 4ﬂ @

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Setjmp Library

This library contains functions and types definitions for bypassing the normal
function call and return discipline. The type declared is jmp_buf which is an array
type suitable for holding the information needed to restore a calling environment.

Type declaration is contained in sejmp16.h and setjmp18.h header files for pic16
and pic18 family mcus respectively. These headers can be found in the include
folder of the compiler. The implementation of this library is different for pic16 and
pic18 family mcus. For picl16 family Setjmp and Longjmp are implemented as
macros defined in setjmp16.h header file and for pic18 family as functions defined
in setjmp library file. Due to picl6 family specific of not being able to read/write
stack pointer, the program execution after Longjmp ivocation occurs depends on
the stack content. That is why, for pic16 family only, implementation of Setjmp
and Longjmp functions is not ANSI C standard compliant.

Library Routines

Setjmp
Longjmp
Setjmp
Prototype int setjmp (jmp_buf env);
Returns if the return is from direct invocation it returns 0
if the return is from a call to the longjmp it returns nonzero value
Description This function saves calling position in jmp_buf for later use by longjmp. The parameter
env: array of type (jmp_buf) suitible for holding the information needed for restoring
calling environment.
Requires Nothing.
Example setjmp (buf) ;
“TTpage e

4ﬂ 4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

miqul: .

making & smple... > MIKROD - € COMPILER FOR MICROCHIP PIC MICROCONTROLLERS
Longjmp
Prototype void longjmp (jmp_buf env, int val);
Returns longjmp causes setjmp to return val, if val is 0 it will return 1.
Description Restores calling environment saved in jmp_buf by most recent invocation of setjmp

macro. If there has been no such invocation, or function conatinig the invocation of
setjmp has terminated in the interim, the behaviour is undefined.Parameter env: array of
type (jmp_buf) holding the information saved by corresponding setjmp invocation, val:
char value, that will return corresponding setjmp.

Requires Invocation of Longjmp must occur before return from the function in which Setjmp was
called encounters.

Example longjmp (buf, 2);

Library Example

Example demonstrates function cross calling using setjmp and longjmp functions.
When called, Setjmp() saves its calling environment in its jmp_buf argument for
later use by the Longjmp(). Longjmp(), on the other hand, restores the environ-
ment saved by the most recent invocation of the Setjmp() with the corresponding
jmp_buf argument. This example can be found in mikroC Setjmp example folder.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 4ﬂ 5

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W an-

Time Library

The Time Library contains functions and type definitions for time calculations in
UNIX time format. UNIX time counts the number of seconds since an "epoch".
This is very convenient for programs that work with time intervals: the difference
between two UNIX time values is a real-time difference measured in seconds,
within the accuracy of the local clock.

What is the epoch?

Originally it was defined as the beginning of 1970 GMT. (Jan. 1st 1970 Julian
day) GMT, Greenwich Mean Time, is a traditional term for the time zone in
England.

The type declared is TimeStruct which is an structure type suitable for time and
date storage. Type declaration is contained in timelib.h which can be found in
mikroC Time Library Demo example folder.

Library Routines

Time dateToEpoch
Time epochToDate
Time dateDiff

Time_dateToEpoch

Prototype long Time dateToEpoch (TimeStruct *ts);
Returns This function returns number of seconds.
Description This function returns the unix epoch : number of seconds since Jan. 1st 1970
0hO0OmnO0O0s of the time struct pointed by ts.
Requires Nothing.
Example Time dateToEpoch (&tsl);
CTpage T

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroG

Méé&? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Time_epochToDate

Prototype void Time epochToDate (long e, TimeStruct *ts);

Returns This function returns number of seconds since 1970.

Description Convert the unix epoch e (number of seconds since 1970) into a time struct ts.
Requires Nothing.

Example Time epochToDate (epoch, &ts2);

Time_dateDiff

Prototype long Time dateDiff (TimeStruct *tl, TimeStruct *t2);
Returns This function returns return time difference in seconds as a signed long.
Description This function compares two dates, returns time difference in seconds as a signed long.

Result is positive if t1 is before t2, result is null if t1 is the same as t2 and result is nega-
tive if t1 is after t2.

Requires Note: This function is implemented as macro in timelib.h header file which can be
found in mikroC Time Library Demo example folder.

Examp]e diff = Time dateDiff (&tsl, &ts2);

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 4ﬂ 7

MIKRODG - C COMPILER FOR MIGROCHIP PIC MICROCONTROLLERS W“? de-

Library Example

Example demonstrates TimeLibraryDemo (simplified c-like time library for PIC

MCU).

#include "timelib.h"
TimeStruct tsl, ts2 ;
long epoch ;

long diff ;

void main ()

{

tsl.ss = 0 ;
tsl.mn = 7 ;
tsl.hh = 17 ;
tsl.md = 23 ;
tsl.mo = 5 ;
tsl.yy = 2006 ;

Va3
* what 1is the epoch of the date in ts ?
*/

epoch = Time dateToEpoch (&tsl) ;

J*
* what date is epoch 1234567890 ~?
*/

epoch = 1234567890 ;

Time epochToDate (epoch, &ts2) ;

Vas
* how much seconds between this two dates ?
*/

diff = Time dateDiff (&tsl, &ts2) ;

}

4ﬂ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

Méé&? iz simple. .. MIKROC - C COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Contact us: I_

If you are experiencing problems with any of our products or you just want addi-
tional information, please let us know.

Technical Support for compiler

If you are experiencing any trouble with mikroC, please do not hesitate to con-
tact us - it is in our mutual interest to solve these issues.

Discount for schools and universities

mikroElektronika offers a special discount for educational institutions. If you
would like to purchase mikroC for purely educational purposes, please contact
us.

Problems with transport or delivery

If you want to report a delay in delivery or any other problem concerning distri-
bution of our products, please use the link given below.

Would you like to become mikroElektronika's distributor?

We in mikroElektronika are looking forward to new partnerships. If you would
like to help us by becoming distributor of our products, please let us know.

Other

If you have any other question, comment or a business proposal, please contact
us:

mikroElektronika
Admirala Geprata 1B
11000 Belgrade
EUROPE

Phone: + 381 (11) 30 66 377, + 381 (11) 30 66 378
Fax: + 381 (11) 30 66 379

E-mail: office@mikroe.com

Website: www.mikroe.com

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS 4ﬂ @

	mikroC
	Reader’s note
	mikroC IDE
	Code Editor
	Code Explorer
	Debugger
	Error Window
	Statistics
	Integated Tools
	Keyboard Shortcuts

	Building Applications
	Projects
	Source Files
	Compilation
	Error Messages

	mikroC Language Reference
	PIC Specifics
	mikroC Specifics
	Lexical Elements
	mikroICD (In-Circuit Debugger)
	Tokens
	Constants
	Keywords
	Identifiers
	Punctuators
	Objects and LValues
	Scope and Visibility
	Name Spaces
	Duration
	Types
	Fundamental Types
	Derived Types
	Types Conversions
	Declarations
	Functions
	Operators
	Expressions
	Statements
	Preprocessor

	mikroC Libraries
	Built-In Routines
	Library Routines
	ADC Library
	CAN Library
	CANSPI Library
	Compact Flash Library
	Compact Flash FAT Library v2.xx
	EEPROM Library
	Ethernet Library
	SPI Ethernet Library
	Flash Memory Library
	I2C Library
	Keypad Library
	LCD Library (4-bit interface)
	LCD Custom Library (4-bit interface)
	LCD8 Library (8-bit interface)
	Graphic LCD Library
	T6963C Graphic LCD Library
	Manchester Code Library
	MMC/SD Card Library
	OneWire Library
	PS/2 Library
	PWM Library
	RS-485 Library
	Software I2C Library
	Software SPI Library
	Software UART Library
	Sound Library
	SPI Library
	USART Library
	USB HID Library
	Util Library
	ANSI C Ctype Library
	ANSI C Math Library
	ANSI C Stdlib Library
	ANSI C String Library
	Conversions Library
	Trigonometry Library
	Sprint Library
	SPI Graphic LCD Library
	Port Expander Library
	SPI LCD Library (4-bit interface)
	SPI LCD8 (8-bit interface) Library
	SPI T6963C Graphic LCD Library
	Setjmp Library
	Time Library

	Contact us

